首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
地质学   13篇
海洋学   1篇
  2022年   4篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 203 毫秒
1.
In this paper, a comprehensive study on simulating the shearing behavior of frictional materials is performed. A set of two explicit equations, describing the relationship among the shear stress ratio and the distortional strain and the volumetric strain, are formulated independently. The equations contain three stress parameters and three strain parameters and another parameter representing the nonuniformity of stress and strain during softening. All the parameters have clear physical significance and can be determined experimentally. It is demonstrated that the proposed equations have the capacity of simulating the complicated shearing behavior of many types of frictional materials including geomaterials. The proposed equations are used to simulate the stress–strain behavior for 27 frictional materials with 98 tests. These materials include soft and stiff clays in both reconstituted and structured states, silicon sands and calcareous sands, silts, compacted fill materials, volcanic soils, decomposed granite soils, cemented soils (both artificially and naturally cemented), partially saturated soils, ballast, rocks, reinforced soils, tire chips, sugar, wheat, and rapeseed. It has been demonstrated that the proposed explicit constitutive equations have the capacity to capture accurately the shearing behavior of frictional materials both qualitatively and quantitatively. A study on model parameters has been performed.  相似文献   
2.
In the era of high speed trains, it is very important to ensure the stability of rail tracks under adverse conditions including the fouling of ballast. Fouling of ballast from unstable and saturated soft subgrade soil is one of the major reasons for track deterioration. The reported results of a number of large-scale laboratory experiments on the shear behaviour of ballast and fouled ballast are analysed, herein. It was observed that fines have a significant influence on the shear behaviour of ballast. Shear strength increases and dilatancy decreases with the addition of fines. In this paper, a semi-empirical mathematical model has been proposed to capture the dilatancy of ballast fouled with fines during shearing. The empirical constants a, b and c proposed in the model are a function of the fines content Void Contamination Index (VCI). The results of the model have been compared with the laboratory experiments and are found to be in good agreement.  相似文献   
3.
4.
Various analytical theories of consolidation for soils with vertical drains have been proposed in the past. Most conventional theories are based on a cylindrical unit cell that contains only a single vertical drain. This paper described a new analytical model where a vertical drain located at the centre (the ‘inner vertical drain’) and is surrounded by two or three vertical drains (the ‘outer vertical drains’), the number of which depends on whether the configuration is triangular or rectangular. Both types of drains are combined into a cylindrical unit cell, and the water is assumed to flow both inwards to the inner vertical drain and outwards to the outer vertical drains distributed around the circumference. The outer radial boundary of the unit cell is regarded as a permeable boundary, with a drainage capacity of two or three separate vertical drains for triangular and rectangular configurations, respectively. The smear effects and the drainage resistances for both the inner and outer vertical drains are considered in the analysis as well. In this way, the equations governing the consolidation process with multiple vertical drains are derived, and the corresponding analytical solutions are obtained for instantaneously loading, ramp loading and multi‐stage of instantaneously loading and multi‐stage of ramp loading. The present solutions are finally compared with several conventional solutions for a single vertical drain in the literature. The results show that the present model predicts the same average degree of consolidation as conventional models do, which verifies the correctness of this new model. Finally, the settlement predicted by the present solution is compared with the measured settlement from a field test at the Port of Brisbane, Australia, which shows a good agreement between them. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
By incorporating the nonlinear variation of a soil's compressibility and permeability during the process of consolidation, an analytical solution for the radial consolidation of vertical drains has been developed for a general time‐variable loading. The general solution was verified for the cases of instantaneous loading and ramp loading. Detailed solutions were further derived for two special loading schemes: multistage loading and preloading–unloading–reloading. The nonlinear consolidation behavior of a vertical drain subjected to these two types of loading schemes was then investigated by a parametric study. The results show that the loading rate, the ratio of the compressibility index to the permeability index (Cc/Ck), and the initial stress state have a significant influence on the consolidation rate. A smaller value of Cc/Ck, a larger initial stress, or a fast loading rate always leads to a rapid consolidation rate. During the unloading period, a negative excess pore water pressure may occur, and a slower unloading rate may reduce this negative value. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
The Shoalhaven region of NSW experiences environmental acidification due to acid sulphate soils (ASS). In order to trial an environmental engineering solution to groundwater remediation involving a permeable reactive barrier (PRB), comprehensive site characterisation and laboratory-based batch and column tests of reactive materials were conducted. The PRB is designed to perform in situ remediation of the acidic groundwater (pH 3) that is generated in ASS. Twenty-five alkaline reactive materials have been tested for suitability for the barrier, with an emphasis on waste materials, including waste concrete, limestone, calcite-bearing zeolitic breccia, blast furnace slag and oyster shells. Following three phases of batch tests, two waste materials (waste concrete and oyster shells) were chosen for column tests that simulate flow conditions through the barrier and using acidic water from the field site (pH 3). Both waste materials successfully treated with the acidic water, for example, after 300 pore volumes, the oyster shells still neutralised the water (pH 7).  相似文献   
7.
Acta Geotechnica - This study aims to promote the concept of using rubber granules from waste tyres as elastic aggregates blended with traditional ballast particles for better performance of rail...  相似文献   
8.
Acta Geotechnica - This study presents a microscale approach for evaluating the internal instability of natural granular soils using the discrete element method. The coordination number and the...  相似文献   
9.
10.
Vegetation contributes to weak soil stabilisation through reinforcement of the soil, dissipation of excess pore pressure and increasing the shear strength by induced matric suction. This paper describes the way vegetation influences soil matric suction, shrinkage and ground settlement in the vadose zone through transpiration. A mathematical model for the rate of root water uptake, including the root growth rate considering ground conditions, type of vegetation and climatic parameters, has been developed. A finite element approach is employed to solve the transient coupled flow-deformation equations. The finite element mesh is built using partially saturated soil elements capable of representing the salient aspects of unsaturated permeability and the soil water characteristic curve. The model formulation is based on the effective stress theory of unsaturated soils. Based on this proposed model, the distribution of the ground matric suction profile adjacent to the tree is numerically analysed. Current field measurements of soil matric suction and moisture content collected from Miram site located in Victoria State, Australia by the authors are compared with the numerical predictions. The results indicate that the proposed root water uptake model incorporated in the numerical analysis can be used for prediction of ground properties influenced by tree roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号