首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
地球物理   1篇
地质学   8篇
天文学   4篇
  2019年   2篇
  2017年   2篇
  2015年   1篇
  2012年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1973年   1篇
排序方式: 共有13条查询结果,搜索用时 226 毫秒
1.
We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na‐poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric‐forming Na‐rich muscovite is also progressively replaced by fabric‐forming Na‐poor muscovite. The mineralogy of the new phyllonitic fault‐rock produced is dominated by Na‐poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric‐forming Na‐rich muscovite is selectively replaced at high‐strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high‐grade porphyroblasts by weaker Na‐poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na‐rich muscovite‐defined foliation destroys not only the metastable high‐grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.  相似文献   
2.

This study evaluated the Cretaceous (Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rare-earth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments’ provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr (651–1352 ppm), Ba (56–157 ppm), V (38–90 ppm), and Sr (15.1–59.6 ppm). Average values of Co and Ni were 1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies, typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment. 18O values ranged from + 15.4 to + 21.2‰ for the investigated samples, consistent with a residual material derived from chemical weathering of felsic rock and redeposited in a sedimentary basin (typical values of + 19 to + 21.2‰). While in the basin, the sediments experienced extended interactions with meteoric water enriched in δD and δ16O. However, the variation in δD and δ16O values for the investigated samples is attributed to the high temperature of formation (54–91 °C). The δD and δ18O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot, tropical climatic conditions.

  相似文献   
3.
The Sheepbed mudstone forms the base of the strata examined by the Curiosity rover in Gale Crater on Mars, and is the first bona fide mudstone known on another planet. From images and associated data, this contribution proposes a holistic interpretation of depositional regime, diagenesis and burial history. A lake basin probably received sediment pulses from alluvial fans. Bed cross‐sections show millimetre to centimetre‐scale layering due to distal pulses of fluvial sediment injections (fine‐grained hyperpycnites), fall‐out from river plumes, and some aeolian supply. Diagenetic features include mineralized synaeresis cracks and millimetre‐scale nodules, as well as stratiform cementation. Clay minerals were initially considered due to in situ alteration, but bulk rock chemistry and mineralogy suggests that sediments were derived from variably weathered source rocks that probably contained pre‐existing clay minerals. X‐ray diffraction analyses show contrasting clay mineralogy in closely spaced samples, consistent with at least partial detrital supply of clay minerals. A significant (ca 30 wt%) amorphous component is consistent with little post‐depositional alteration. Theoretical modelling of diagenetic reactions, as well as kinetic considerations, suggest that the bulk of diagenetic clay mineral formation occurred comparatively late in diagenesis. Diagenetic features (synaeresis cracks and nodules) were previously thought to reflect early diagenetic gas formation, but an alternative scenario of synaeresis crack formation via fabric collapse of flocculated clays appears more likely. The observed diagenetic features, such as solid nodules, hollow nodules, matrix cement and ‘raised ridges’ (synaeresis cracks) can be explained with progressive alteration of olivine/glass in conjunction with centrifugal and counter diffusion of reactive species. Anhydrite‐filled fractures in the Sheepbed mudstone occurred late in diagenesis when fluid pressures built up to exceed lithostatic pressure. Generating fluid overpressure by burial to facilitate hydraulic fracturing suggests a burial depth of at least 1000 m for the underlying strata that supplied these fluids.  相似文献   
4.
Relative humidity ( P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} , partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na+/Ca2+ cations and H2O molecules. The observation of different interactions of H2O molecules and Na+/Ca2+ cations with host aluminosilicate frameworks under high- and low- P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions indicated the development of different local strain fields, arising from cation–H2O interactions in NAT-type channels. These strain fields influence the Si–O/Al–O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm−1 in natrolite, 2,276 cm−1 in scolecite, and 2,176 and 2,259 cm−1 in mesolite) result from strong cation–H2O–Al–Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na+/Ca2+ cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm−1 absorption bands in mesolite also appear to be related to Na+/Ca2+ order–disorder that occur when mesolite loses its Ow4 H2O molecules.  相似文献   
5.
6.
The upper 25 m of Bandelier Tuff at Pajarito Mesa, New Mexico, include soils, shallow fractures, deeper fractures, and tuff matrices in which clays provide a record of transport and alteration. The principal pathways within this system are fractures that penetrate the tuff. Large fractures that host deep root penetration provide a setting in which clay deposits accumulate through particulate or colloidal migration from the soil zone. Clays throughout the system are predominantly expandable interstratified illite/smectites (I/S), but clays of the tuff matrix at depth are distinctly Fe-rich and are not mixed with clays transported from the surface into fractures. Chemical alteration superimposed on clay particles transported into fractures results in clays with lower Al : Si ratios, higher Na, and higher lanthanide content with increasingly negative Eu anomalies with depth. These changes are accompanied by invasion and precipitation of Mn oxides, principally birnessite, within clay bodies. Investigation of the Mn oxides by synchrotron X-ray fluorescence (SXRF) shows that Mn is associated with Ba, Ce, Ni, and Pb. In addition, synchrotron X-ray absorption near-edge structure (XANES) spectra show that Ce in Mn oxides occurs as Ce3+ and Ce4+, with average Ce oxidation state of ∼3.75. The Mn oxides intergrown with clays actively participate in removal of Ce from solution, accompanied by oxidation of Ce3+ to Ce4+. Other lanthanides are accumulated by the clays but are not concentrated along with Ce in the Mn oxides. Extraction of Ce from solution by Mn oxides is more effective than lanthanide accumulation in clay, a process that is variable and likely influenced by defects, extent of recrystallization, and particle sizes. This dichotomy in lanthanide interaction results in locally constant Ce content but either negative or positive Ce anomalies in the clay-Mn oxide system as a consequence of variability in the abundance of the other lanthanides. Nevertheless, the net lanthanide pattern for the sum of all clay-Mn oxide samples in either shallow or deep fractures has no Ce anomaly, indicating that other lanthanides segregated from Ce are not transported beyond the range of either the shallow or deep fracture systems. Evidence from Eu anomalies indicates that lanthanides accumulated in the fracture clays are acquired from the local tuff. The clay-Mn oxide assemblage is more effective than clay alone in accumulating of a wide variety of heavy metals.  相似文献   
7.
Dolomite [CaMg(CO3)2] forms in numerous geological settings, usually as a diagenetic replacement of limestone, and is an important component of petroleum reservoir rocks, rocks hosting base metal deposits and fresh water aquifers. Dolomite is a rhombohedral carbonate with a structure consisting of an ordered arrangement of alternating layers of Ca2+ and Mg2+ cations interspersed with anion layers normal to the c‐axis. Dolomite has symmetry, lower than the (CaCO3) symmetry of calcite primarily due to Ca–Mg ordering. High‐magnesium calcite also has symmetry and differs from dolomite in that Ca2+ and Mg2+ ions are not ordered. High‐magnesium calcite with near‐dolomite stoichiometry (≈50 mol% MgCO3) has been observed both in nature and in laboratory products and is referred to in the literature as protodolomite or very high‐magnesium calcite. Many dolomites display some degree of cation disorder (Ca2+ on Mg2+ sites and vice versa), which is detectable using transmission electron microscopy and X‐ray diffractometry. Laboratory syntheses at high temperature and pressure, as well as studies of natural dolomites show that factors affecting dolomite ordering, stoichiometry, nucleation and growth include temperature, alkalinity, pH, concentration of Mg and Ca, Mg to Ca ratio, fluid to rock ratio, mineralogy of the carbonate being replaced, and surface area available for nucleation. In spite of numerous attempts, dolomite has not been synthesized in the laboratory under near‐surface conditions. Examination of published X‐ray diffraction data demonstrates that assertions of dolomite synthesis in the laboratory under near‐ambient conditions by microbial mediation are unsubstantiated. These laboratory products show no evidence of cation ordering and appear to be very high‐magnesium calcite. Elevated‐temperature and elevated‐pressure experiments demonstrate that dolomite nucleation and growth always are preceded by very high‐magnesium calcite formation. It remains to be demonstrated whether microbial‐mediated growth of very high‐magnesium calcite in nature provides a precursor to dolomite nucleation and growth analogous to reaction paths in high‐temperature experiments.  相似文献   
8.
This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rareearth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments' provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr(651–1352 ppm), Ba(56–157 ppm), V(38–90 ppm),and Sr(15.1–59.6 ppm). Average values of Co and Ni were1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies,typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment.^(18 )O values ranged from+ 15.4 to + 21.2% for the investigated samples, consistent with a residual material derived from chemicalweathering of felsic rock and redeposited in a sedimentary basin(typical values of + 19 to + 21.2%). While in the basin, the sediments experienced extended interactions with meteoric water enriched in d D and d16 O. However,the variation in d D and d16 O values for the investigated samples is attributed to the high temperature of formation(54–91 °C). The d D and d^(18 )O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot,tropical climatic conditions.  相似文献   
9.
Thermodynamic data for several clays, zeolites, and MgSO4 salts were combined with calculated yearly mean temperatures and water-vapor pressures on the martian surface to predict mineral hydration states from low to middle latitudes. These predictions were used to evaluate whether the necessary amount and distribution of hydrous minerals were compatible with the Mars Odyssey observations of water-equivalent hydrogen (WEH). Our results indicate that zeolites like chabazite or clay minerals like Ca-montmorillonite would have to be unrealistically abundant in the martian soil (as much as 55 wt%) while Mg-sulfate hydrates at concentrations between 2 and 11 wt% could account for the WEH. However, the geographic distribution of WEH is incompatible with a uniformly distributed mineralogy in equilibrium with the annual mean P-T environment. A heterogeneous distribution of a mixture of different hydrous minerals, reflecting a heterogeneous Mars surface geology, may better explain a significant portion of the observed near-equatorial WEH.  相似文献   
10.
There is a growing body of evidence that points to the survival of water or hydrous minerals on the Moon and the potential for large aqueous reservoirs in shadowed craters at the lunar poles. CheMin, an XRD/XRF instrument that is currently under development, could provide a definitive test of whether the polar hydrogen signal measured by the recent Lunar Prospector mission is an indication of a significant water reservoir or merely reflects an anomalously rich accumulation of solar-wind hydrogen. Proposed enhancements of CheMin could be used in conjunction with a drilling system capable of penetrating the upper few tens of centimeters of the lunar regolith to search for ices or hydrous minerals. This advanced version of the CheMin instrument would be within the size, mass, and power constraints of Ariane 5 micromissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号