首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2011年   1篇
  2007年   1篇
  2001年   1篇
  1988年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
The Proterozoic Lindås Nappe, part of the Caledonidesof western Norway, was affected by penetrative Sveconorwegiangranulite-facies metamorphism, followed by a fluid-driven eclogite-and amphibolite-facies Caledonian overprint, spatially restrictedalong fractures and shear zones. In mafic granulites and amphibolites,a luminescent anhedral zircon overgrowth, which gives an averageage of 924 ± 58 Ma (Th/U = 0·52; secondary ionmass spectrometry data), surrounds a magmatic zoned core withan age of 952 ± 32 Ma (Th/U = 1·27). In the granulites,a continuous rim of zircon or a discontinuous corona of  相似文献   
2.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   
3.
Widespread metasomatism affected the 100 km long and 25 km wide Proterozoic Bamble and Modum‐Kongsberg sectors, South Norway, resulting in the chemical and mineralogical transformation of wide segments of continental crust. Scapolitization was associated with veining, and was followed by albitization, transforming metagabbros pervasively over large areas. Fluids played an active role in these reactions, forming H2O‐, CO2‐ and Cl‐bearing phases at the expense of the primary volatile‐free minerals, causing depletion in Fe and infiltration of K, Mg, Na, B and P. The transformation of gabbro to scapolite metagabbro is observed as a fluid front replacing the primary magmatic mineral assemblage in three stages: during an incipient amphibolitization stage, the primary mafic minerals were replaced by anthophyllite or hastingsite, followed by pargasitic and edenitic Ca‐amphibole. Magnetite was dissolved, while rutile formed by the breakdown of ilmenite. Plagioclase was replaced by Cl‐rich scapolite (Me19‐42) reflecting Cl‐saturation, while K‐ and Mg‐saturation produced phlogopite, enstatite, sapphirine and rare corundum. The high modal contents of chlorapatite and tourmaline in the scapolite metagabbro imply infiltration of B and P. The albitites consist dominantly of albite (Ab95‐98) with varying, generally small, amounts of chlorite, calcite, rutile, epidote and pumpellyite. They formed from a H2O–CO2‐fluid rich in Na. The gabbro yields a zircon U–Pb age of 1149 ± 7 Ma and tonalite 1294 ± 38 Ma, whereas rutile from scapolite metagabbro and albitite has U–Pb ages of 1090–1084 Ma, and phlogopite produced during scapolitization Rb–Sr ages of 1070–1040 Ma. Temperature conditions for the scapolitization are inferred to have been 600–700 °C. The reported ages, combined with mineralogical and petrographic observations and inferred P–T conditions, indicate that the metasomatism was a part of the regional Sveconorwegian amphibolite facies metamorphic phase. Initial 87Sr/86Sr of the scapolite ranges from 0.704 to 0.709. The Sr‐signature, the Cl‐ and B‐rich environment and regional distribution of lithologies suggest that the fluid may have originated from evaporites that were mobilized during the regional metamorphism.  相似文献   
4.
Aluminous granulites of the Archean (2?8 Ga) Kasai craton (Zaire)consist of two main mineral assemblages: Grt-Opx and Sil?Grt?Crdrocks. The high-grade metamorphic conditions as deduced from Grt-Opxand Grt-Opx-Pl-Qtz equilibria are 720?C-6?7 kb. Consideringthe zoning of the same minerals, the slope of the P-T path isestimated at 15 b/?C. Thermobarometry involving Crd is consistentwith those P-T conditions. Three cordierite-forming reactions have been observed petrographically: These equilibria are continuous reactions; end-member reactionshave slopes less than 15 b/?C; they are decompression reactionsoccurring after the metamorphic climax. Using available thermodynamic data, (R3) fixes the oxygen fugacityto a value below the QFM buffer (log10fO2 = – 17?6 at720?C, 6?7 kb and in the graphite stability field. The absence of graphite in the rocks showsthat the end of the granulite facies metamorphism did not occurunder important CO2 streaming. The polymetamorphic history of this Archean craton is considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号