首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2009年   1篇
  2004年   1篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Quaternary lavas and pyroclastic rocks of Mount Mazama, CraterLake caldera, and the surrounding area have variable Sr, Nd,and Pb isotopic compositions. High-alumina olivine tholeiites(HAOT) have 87Sr/86Sr ratios of 0.70346–0.70364; basalticandesite, 0–70349–0.70372; shoshonitic basalticandesite, 0.70374–0.70388; and andesite, 0.70324–0.70383.Dacites of Mount Mazama have 87Sr/86Sr ratios of 0.70348–0.70373.Most rhyodacites converge on 0.7037. However, rhyodacite ofthe caldera-forming, climactic eruption has 87Sr/86Sr=0.70354because of an admixed low-87Sr/86Sr component. Andesitic tomafic-cumulate scoriae of the climactic eruption, and enclavesin preclimactic rhyodacites, cluster in two groups but shownearly the entire 87Sr/86Sr range of the data set, confirmingpreviously suggested introduction of diverse parental magmasinto the growing climactic chamber. Pb and Nd isotope ratiosdisplay less variation (206Pb/204Pb= 18.838–18.967, 207Pb/204Pb=15.556–15.616,208Pb/204Pb=38.405–38.619; Nd= +3.9 to +6.1) and generallycovary with 87Sr/86 Sr ratios. Radiogenic isotope data fromCrater Lake plot with published data for other Cascade volcanoeson isotope ratio correlation diagrams. The isotopic data for the Crater Lake area require sources ofprimitive magmas to consist of depleted mantle and a subductioncomponent, introduced in variable quantity to the depleted mantlewedge. Variable degrees of melting of this heterogeneous mantle,possibly at different depths, produced the diversity of isotopiccompositions and large-ion lithophile element (LILE) abundancesin primitive magmas. Trace element ratios do not indicate presenceof an ocean island basalt (OIB) source component that has beenreported in lavas of some other Cascade volcanoes. Crustal contamination may have affected isotope ratios and LILEconcentrations in evolved HAOT, where initial LILE concentrationswere low. Contamination is more difficult to detect in the calcalkalinelavas because of their higher LILE concentrations and the smallisotopic contrast with likely contaminants, such as mid- tolower-crustal rocks thought to be equivalents of igneous rocksof the Klamath Mountains and associated lower crust. Crustalassimilation appears to be required for calcalkaline rocks onlyby 18O values, which vary from lows of +5.6 to + 6.0% in HAOTand primitive basaltic andesites to a high of +7.0% in dacite,a range that is too high to be explained by plagioclase-dominatedclosed-system fractional crystallization. Elevated 18O valuesof differentiated lavas may be attributed to interaction withrelatively 18O-rich, 87Sr-poor crustal rocks. Variably fused granitoid blocks ejected in the climactic eruption,and rarely in late Pleistocene eruptive units, have 18Opl of–3.4 to +6.5% and 18Oqz of –2.2 to +8.0% but haveSr, Nd, and Pb isotope ratios similar to volcanic rocks (e.g.87Sr/86Sr0.7037). Rb and Sr data for glass separates from granodioritessuggest that the source pluton is Miocene. Glass from granodioritehas 87Sr/86Sr ratios as high as 0.70617. Oxygen isotope fractionationbetween quartz, plagioclase, and glass indicates requilibrationof O isotopes at magmatic temperatures, after 18O/16O had beenlowered by exchange with meteoric hydrothermal fluids. Unmeltedgranodiorite xenoliths from pre-climactic eruptive units have18O values that are consistent with onset of hydrothermal exchangeearly during growth of the climactic magma chamber. Assimilationof such upper-crustal granodiorite apparently lowered 18O valuesof rhyodacites without significantly affecting their magmaticcompositions in other ways.  相似文献   
2.
Quaternary monogenetic volcanism in the High Cascades of Oregonis manifested by cinder cones, lava fields, and small shields.Near Crater Lake caldera, monogenetic lava compositions include:low-K (as low as 0?09% K2O) high-alumina olivine tholeiite (HAOT);medium-K. calc-alkaline basalt, basaltic andesite, and andesite;and shoshonitic basaltic andesite (2?1% K2O, 1750 ppm Sr at54% SiO2). Tholeiites have MORB-like trace element abundancesexcept for elevated Sr, Ba, and Th and low high field strengthelements (HFSE), and they represent near-primary liquids. Theyare similar to HAOTs from the Cascades and adjacent Basin andRange, and to many primitive basalts from intraoceanic arcs.Calc-alkaline lavas show a well-developed arc signature of highlarge-ion lithophile elements (LILE) and low HFSE. Their Zrand Hf concentrations are at least partly decoupled from thoseof Nb and Ta; HREE are low relative to HAOT. Incompatible elementabundances and ratios vary widely among basaltic andesites.Some calc-alkaline lavas vented near Mount Mazama contain abundantgabbroic microxcnoliths, and are basaltic andesitic magmas contaminatedwith olivine gabbro. A calc-alkaline basalt and a few basaltic andesites have MgOand compatible trace element contents that suggest only minorfractionation. There appears to be a compositional continuumbetween primitive tholeiitic and calc-alkaline lavas. Compositionalvariation within suites of comagmatic primitive lavas, boththoleiitic and calc-alkaline, mainly results from differentdegrees of partial melting. Sources of calc-alkaline primarymagmas were enriched in LILE and LREE by a subduction componentand contained residual garnet, whereas sources of HAOTs hadlower LILE and LREE concentrations and contained residual clinopyroxene.High and variable LILE and LREE contents of calc-alkaline lavasreflect variations in fluid-transported subduction componentadded to the mantle wedge, degree of partial melting, and possiblyalso interaction with rocks or partial melts in the lower crust. Andesites were derived from calc-alkaline basaltic andesitesby fractionation of plagioclase+augite+magnetite+apatite ? orthopyroxeneor olivine, commonly accompanied by assimilation. Many andesitesare mixtures of andesitic or dacitic magma and a basaltic orbasaltic andesitic component, or are contaminated with gabbroicmaterial. Mingled basalt, andesite, and dacite of Williams Craterformed by multi-component, multi-stage mixing of basaltic andesiticmagma, gabbro, and dacitic magma. The wide range of compositionsvented from monogenetic volcanoes near Crater Lake is a resultof the thick crust coupled with mild tectonic extension superimposedon a subduction-related magmatic arc.  相似文献   
3.
The compositionally bimodal Pleistocene Coso volcanic fieldis located at the western margin of the Basin and Range province  相似文献   
4.
This paper presents results from two flume runs of an ongoing series examining flow structure, sediment transport and deposition in hydraulic jumps. It concludes in the presentation of a model for the development of sedimentary architecture, considered characteristic of a hydraulic jump over a non-eroding bed. In Run 1, a hydraulic jump was formed in sediment-free water over the solid plane sloping flume floor. Ultrasonic Doppler velocity profilers recorded the flow structure within the hydraulic jump in fine detail. Run 2 had identical initial flow conditions and a near-steady addition of sand, which formed beds with two distinct characteristics: a laterally extensive, basal, wedge-shaped massive sand bed overlain by cross-laminated sand beds. Each cross-laminated bed recorded the initiation and growth of a single surface feature, here defined as a hydraulic-jump unit bar . A small massive sand mound formed on the flume floor and grew upstream and downstream without migrating to form a unit bar. In the upstream portion of the unit bar, sand finer than the bulk load formed a set of laminae dipping upstream. This set passed downstream through the small volume of massive sand into a foreset, which was initially relatively coarse-grained and became finer-grained downstream. This downstream-fining coincided with cessation of the growth of the upstream-dipping cross-set. At intervals, a new bed feature developed above and upstream of the preceding hydraulic-jump unit bar and grew in the same way, with the foreset climbing the older unit bar. The composite architecture of the superimposed unit bars formed a fanning, climbing coset above the massive wedge, defined as one unit: a hydraulic-jump bar complex .  相似文献   
5.
Abstract Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska. These terranes differ in protoliths, structural level and cooling ages. A structurally complex zone of gently north-dipping tectonites separates the two terranes. The northern, structurally higher Taylor Mountain terrane includes garnet amphibolite, biotite ± hornblende gneiss, marble, quartzite, metachert, pelitic schist and cross-cutting granitoids of intermediate composition (including the Late Triassic to Early Jurassic Taylor Mountain batholith). Lithological associations and isotopic data from the granitoids indicate an oceanic or marginal basin origin for the Taylor Mountain terrane. 40Ar/39Ar metamorphic cooling ages from the Taylor Mountain terrane are latest Triassic to earliest Middle Jurassic. The southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane is made up of quartz-biotite schist and gneiss, augen gneiss, pelitic schist, garnet amphibolite and quartzite; we interpret it to comprise a continental margin and granitoid belt built on North American crust. Metamorphic cooling ages from the Lake George subterrane are almost entirely Early Cretaceous. Geothermobarometric analysis of garnet rims and adjacent phases in garnet amphibolite and pelitic schist from the Taylor Mountain terrane and Lake George subterrane indicate peak metamorphic conditions of 7.5-12 kbar at 555-715° C in the northern part of the Taylor Mountain terrane, in which NNE-vergent shear fabrics are preserved; 6.5-10.8 kbar at 520-670° C within the contact zone between the two terranes, in which NW-vergent shear fabrics predominate; and 6.8-11.8 kbar at 570-700° C in the Lake George subterrane of the Yukon-Tanana terrane, in which NW-vergent shear is recorded in the northern part of the study area and SE-vergent shear in the southern part. Where the two shear-sense directions occur together in the northern Lake George subterrane and, locally, in the contact zone, fabrics that record NW-vergent shear are more penetrative and preceded fabrics that record SE-vergent shear. We interpret the pressure, temperature, kinematic and age data to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. The difference in metamorphic cooling ages between the Taylor Mountain terrane and adjacent parts of the Lake George subterrane is best explained by Early Cretaceous unroofing of the Lake George subterrane caused by crustal extension, recorded in its younger top-to-the-SE fabric.  相似文献   
6.
Phenocrysts in porphyritic volcanic rocks may originate in avariety of ways in addition to nucleation and growth in thematrix in which they are found. Porphyritic rhyodacite lavasthat underlie the eastern half of Mount Mazama, the High Cascadeandesite/dacite volcano that contains Crater Lake caldera, containevidence that bears on the general problem of phenocryst origin.Phenocrysts in these lavas apparently formed by crystallizationnear the margins of a magma chamber and were admixed into convectingmagma before eruption. About 20 km3 of pre-Mazama rhyodacite magma erupted during arelatively short period between400 and 500 ka; exposed pre-Mazamadacites are older and less voluminous. The rhyodacites formedas many as 40 lava domes and flows that can be assigned to threeeruptive groups on the basis of composition and phenocryst content.Phenocryst abundance decreases (from 32 to 8 vol.%) and SiO2content increases (from 68 to 73 wt.%) in the apparent orderof eruption. Phenocrysts (plagioclase, orthopyroxene, augite,and Fe-Ti oxides) are commonly fragmental or form polycrystallineaggregates with interstitial glass. Discrete phenocrysts withcomplete euhedral outlines are rare except for small elongatedcrystals. The abundance of discrete phenocrysts increases withthat of aggregates. The grain-size of minerals in the aggregatescovers the range of discrete phenocrysts (0.2–4.2 mm).Rim compositions of phenocrysts and the range of chemical zoningare almost uniform among the three rhyodacite groups, regardlessof whether crystals are discrete or in aggregates. However,a small fraction of phenocrysts, especially small elongatedcrystals, have different compositions: plagioclase with Fe-richcores and augite with Wo-poor cores, both of which are characteristicof crystals in undercooled andesite enclaves in the rhyodacites.The majority of phenocrysts were derived by disintegration ofpolycrystalline aggregates; rare, small phenocrysts crystallizedin andesitic magma similar to that represented by the andesiteenclaves. The modal and chemical compositions of the rhyodacites can beexplained by different degrees of admixing of crystals, representedby the aggregates, into magma having 4 vol.% ‘true’phenocrysts, mainly plagioclase. The aggregates may be partsof the rind formed by in situ crystallization near the walland roof of the magma chamber. The rind was disrupted duringor just before eruption, and pieces were variably disaggregatedand incorporated into erupting magma. The amount of rind incorporateddeclined during the sequence of eruptions. Owing to vesiculationof interstitial liquid and shearing during flow, crystals inthe aggregates were separated and became phenocrysts. Pre-Mazamarhyodacite was erupted dominantly as lava, as opposed to thecompositionally similar rhyodacite pumice of the Holocene caldera-formingeruption of Mount Mazama, apparently because its source chamberwas crystallizing inward rather than actively growing.  相似文献   
7.
The Alaska–Aleutian island arc is well known for eruptingboth tholeiitic and calc-alkaline magmas. To investigate therelative roles of chemical and temporal controls in generatingthese contrasting liquid lines of descent we have undertakena detailed study of tholeiitic lavas from Akutan volcano inthe oceanic Aleutian arc and calc-alkaline products from Aniakchakvolcano on the continental Alaskan Peninsula. The differencesdo not appear to be linked to parental magma composition. TheAkutan lavas can be explained by closed-system magmatic evolution,whereas curvilinear trace element trends and a large range in87Sr/86Sr isotope ratios in the Aniakchak data appear to requirethe combined effects of fractional crystallization, assimilationand magma mixing. Both magmatic suites preserve a similar rangein 226Ra–230Th disequilibria, which suggests that thetime scale of crustal residence of magmas beneath both thesevolcanoes was similar, and of the order of several thousandyears. This is consistent with numerical estimates of the timescales for crystallization caused by cooling in convecting crustalmagma chambers. During that time interval the tholeiitic Akutanmagmas underwent restricted, closed-system, compositional evolution.In contrast, the calc-alkaline magmas beneath Aniakchak volcanounderwent significant open-system compositional evolution. Combiningthese results with data from other studies we suggest that differentiationis faster in calc-alkaline and potassic magma series than intholeiitic series, owing to a combination of greater extentsof assimilation, magma mixing and cooling. KEY WORDS: uranium-series; Aleutian arc; magma differentiation; time scales  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号