首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地质学   8篇
天文学   21篇
  2009年   1篇
  2008年   1篇
  1997年   1篇
  1990年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1931年   1篇
  1928年   1篇
  1924年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The polarimetric survey of electrons in the K-corona initiated at Pic-du-Midi and Meudon Observatories in 1964 now covers a full solar cycle of activity. The measurements are photometrically calibrated in an absolute scale.In June 1967 a persistent coronal feature was fan-shaped as a lame coronale above quiescent prominences. We deduce an electron density of N 0 = 1.5 × 108 at 60 000 km above the photosphere, a total number of 14 × 1039 electrons, a hydrostatic temperature of 1.7 × 106 K, and a total thermal energy 3N eKT = 1.0 × 1031 ergs. When a center of activity appeared, a major localized condensation developed to replace the old elongated feature, with N 0 = 4.5 × 108, a total of 4.5 × 1039 electrons and the same temperature of 1.7 × 106 K.Also, a fan-shaped feature of exceptional intensity was analysed on 8 September 1966, with N 0 = 6 × 108 and a total of 24 × 1039 electrons.Fan-shaped features are frequent above quiescent prominences. They degenerate above a height of 2R into thinner isolated columns or blades with temperatures also around 1.7 × 106 K.  相似文献   
2.
The coherent 5-min photospheric pressure oscillations with spherical harmonic degrees in the range 100 <l< 1000 were directly imaged over the photosphere with the monochromatic solar telescope FPSS at Meudon Observatory. Movie films were obtained with images spatially filtered to select sizes of increasing wave numbers (or l). Areas with ephemeral concentrations of coherent waves evolve in shape and may move horizontally with velocities of several tenths of km s–1. When a large number of waves are interacting, the maximum vertical velocity V max of the pulsation reaches around 1000 m s–1, irrespective of the size. Extrapolation to the ideal case of a single isolated wave gives V max proportional to size. For the areas of the smallest scale measured (l = 1000), when about 100 waves are interacting, V max is found to be 260 + 25 m s–1 at an altitude of 210 km above the reference level 5000 = 1 and increases vertically with a scale height of 750 ± 400 km.  相似文献   
3.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   
4.
We compare alkenone unsaturation ratios measured on recent sediments from the Indian Ocean (20°N–45°S) with modern sea oceanographic parameters. For each of the core sites we estimated average seasonal cycles of sea surface temperature (SST) and salinity, which we then weighted with the seasonal productivity cycle derived from chlorophyll satellite imagery. The unsaturation index (U37K′) ranges from 0.2 to 1 and correlates with water temperature but not with salinity. TheU37K′versus SST relationship for Indian Ocean sediments (U37K′= 0.033 SST + 0.05) is similar to what has been observed for core tops from the Pacific and Atlantic oceans and the Black Sea. A global compilation for core tops givesU37K′= 0.031 T + 0.084 (R= 0.98), which is close to a previously reported calibration based on particulate organic matter from the water column. For temperatures between 24° and 29°C, however, the slope seems to decrease to about 0.02U37K′unit/°C. For Indian Ocean core tops, the ratios of total C37alkenones/total C38alkenones and the slope of theU37K′-SST relationship are similar to those previously observed for cultures ofEmiliania huxleyibut different from those previously published forGephyrocapsa oceanica.EitherE. huxleyiis a major producer of alkenones in the Indian Ocean or strains ofG. oceanicaliving in the northern Indian Ocean behave differently from the one cultured. In contrast with coccolithophorid assemblages, the ratios of C37alkenones to total C38alkenones lack clear geographic pattern in the Indian Ocean.  相似文献   
5.
Extension of remote sensing of planetary bodies to the ultraviolet is now feasiable up to 2000 Å from earth-orbiting telescopes and spacecraft. The benefits of this extension is analysed on the basis of laboratory spectra taken on a large variety of terrestrial, lunar and meteoritic samples. Knowledge of the albedo for two wavelengths at 2300 and 6500 Å permits classification of a surface into one of the following types: lunar, carbonaceous chondrites, ordinary chondrites, achondrites or acidic rocks, basaltic rocks, irons. For lunar-type surfaces, a simple albedo measurement at 6500 Å can be converted into quantitative abundance determinations of silicate, aluminium oxide and iron; a large amount of telescopic lunar photometry data is available for mapping these abundances. Extension of the photometry to 2300 Å permits quantitative measurement of TiO2 abundances. For asteroids and non-icy satellites, rock-type classification and constraints in chemical abundances of Si, Al, Fe and Ti can be derived from photometry at 2300 and 6500 Å. The IUE telescope already orbiting the earth, the Space Telescope to come, the lunar polar orbiter and other spacecraft under prospect are potentially available to provide the photometric observations at 6500 and 2300 Å required.  相似文献   
6.
Optical measurements of the diameter of Mars were made using a double-image micrometer with large refractors from 1952 to 1971. Discussion of the 90 independent series of measurements gives nine determinations of radius with an accuracy of ±7–8km for different latitudes from pole to equator. The Mariner 4, 6 and 7 occultation results and the radar results availble in 1970 added seven further determinations of comparable accuracy. All these values, within the accuracy of measurement, fit an ellipsoid with Req=3398±3km and Rpo1=3371±4km. The mean density of Mars is thus 3940±0.012g cm−3. The resulting optical oblateness of 0.0079, larger than the dynamical value of 0.0052, results in an equatorial radius excess of 9±5 km which presumably comes about by internal stresses.  相似文献   
7.
8.
Systematic observations of faint satellites were conducted at Pic-du-Midi with a focal coronograph from 1980 March 20 to 24, during which 150 exposures covering 17 hr were obtained; in addition, the 1966 discovery plates of satellites S10 Janus were reexamined together with other 1966 observations. Janus had its greatest eastern elongation on 1966 December 15.720 (±0.003) + light time, at a distance of 2.53Req. It is recognized that some of the observations thought to be 1966 S2 were in fact reobservations of Janus a few days after its discovery. Among the 1980 observations, differences in magnitudes indicate that is satellite 1980 S1 which corresponds to Janus; its greatest eastern elongation was observed on March 23.876 (±0.002) + light time. Subjected to corrections for librations, the mean period over the past 14 years has most probably one of three values: P1 = 0.69458 day, P2 = 06.9448 day or P3 = 0.69438 day. The fainter satellite, S11, which is also 1980 S3, gravitates in an orbit similar to that of Janus and was leading it by +190° in March 1980; this difference of longitude was +224° in December 1966. An object of magnitude 15–16 was seen not detached from the ring; it could be a condensation in the external part of the rings or an additional faint inner satellite.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号