首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   18篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   51篇
地质学   106篇
海洋学   30篇
天文学   28篇
自然地理   14篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   11篇
  2016年   8篇
  2015年   13篇
  2014年   14篇
  2013年   22篇
  2012年   19篇
  2011年   8篇
  2010年   14篇
  2009年   11篇
  2008年   21篇
  2007年   9篇
  2006年   4篇
  2005年   11篇
  2004年   10篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有241条查询结果,搜索用时 51 毫秒
1.
Sediment archives from a mountain lake are used as indicators of seismotectonic activity in the Grenoble area (French western Alps, 45°N). Sedimentological analysis (texture and grain-size characteristics) exhibits several layers resulting from instantaneous deposits in Lake Laffrey: six debris flow events up to 8 cm thick can be attributed to slope failure along the western flank of the basin. Dating with 210Pb and 137Cs gamma counting techniques and the reconnaissance of historical events, provide a constrained age-depth model. Over the last 250 years, five of such debris flow deposits could be related to historical earthquakes of MSK intensities greater than VI over an area of <60 km. One debris flow deposit triggered at the beginning of the last century can be related to an historical landslide possibly triggered by the artificial regulation of the lake level.  相似文献   
2.
3.
Arnaud  M.  Aubourg  E.  Bareyre  P.  Br';ehin  S.  Caridroit  R.  de Kat  J.  Dispau  G.  Djidi  K.  Gros  M.  Lachièze-Rey  M.  Laigneau  Y.  Laurent  B.  Lesquoy  E.  Lavocat  Ph.  Magneville  C.  Mazeau  B.  Milsztajn  A.  Moscoso  L.  Pasquaud  J.  Paul  B.  Perrin  P.  Petibon  J.  Piret  Y.  Queinnec  F.  Rich  J.  Spiro  M.  de Trogoff  J.  Vigroux  L.  Zylberajch  S.  Ansari  R.  Cavalier  F.  Moniez  M.  Beaulieu  J. P.  Ferlet  R.  Grison  Ph.  Vidal-Madjar  A.  Adrianzyk  G.  Berger  J. P.  Burnage  R.  Delclite  J. C.  Kohler  D.  Magnan  R.  Richaud  A.  Guibert  J.  Moreau  O.  Tajahmady  F.  Baranne  A.  Maurice  E.  Prévôt  L.  Gry  C. 《Experimental Astronomy》1994,4(3-4):265-278
A 20cm 2 CCD mosaic camera has been especially built to search for dark galactic halo objects by the gravitational microlensing effect. The sensitive area is made of 16 edge-buttable CCDs developped by Thomson-CTS, with 23×23 µm 2 pixels. The 35 kg camera housing and mechanical equipment is presented. The associated electronics and data acquisition system are described in a separate paper. The camera resides at the focal plane of a 40 cm, f/10, Ferson reflector. The instrument has been in operation since December 1991 at the La Silla Observatory (ESO).  相似文献   
4.
Lead metallurgical slags are partially vitrified materials containing residual amounts of Zn, Pb, Cr, Cd and As. These hazardous materials are generally buried on heaps exposed to weathering. In this study, leaching behavior of lead blast furnace slags has been tested using pure water and open flow experiments. It appears that in such far from equilibrium and slightly acidic conditions, the main phase to be altered is the vitreous phase. As for lunar, basaltic and nuclear glasses, alkalis/proton exchanges prevail and lead to the formation of a non-protective altered layer enriched in Si, Fe and Al. The composition of the altered layer is quite constant except for Si whose concentration decreases towards the leachate interface. Owing to their sizes, micrometric Pb droplets are not always totally dissolved at the slag surface. Nevertheless, nanometric Pb droplets are instantaneously dissolved while a surrounding altered layer is formed. This leads to high Pb releases in open flow systems. Leachate chemistry and dissolution rates of the vitreous phase are closely comparable to previous leaching tests with basaltic and nuclear glasses in conditions far from equilibrium. Moreover, this study confirms that Fe is a stable element in such conditions.  相似文献   
5.
6.
Vertical displacements on the SW–NE Têt fault (Eastern Pyrenees Axial Zone, France), which separates the Variscan Canigou-Carança and Mont-Louis massifs, were constrained using a thermochronologic multi-method approach. 40Ar/39Ar data from the granitic Mont-Louis massif record its Variscan cooling history and reveal no ages younger than Early Cretaceous, while the Canigou-Carança gneiss massif records systematically younger 40Ar/39Ar ages. These younger 40Ar/39Ar ages in the Canigou-Carança gneiss massif are the result of partial to total rejuvenation of argon isotopic systems related to a thermal flow coeval with the Cretaceous HT-BP metamorphism in the North Pyrenean Zone. Only the deepest rocks from the Canigou-Carança suffered this extensive Mid-Cretaceous thermal overprint probably due to differential burial around 4 km at that time. The post Mid-Cretaceous vertical displacements along the Têt fault are recorded by “low” temperature thermochronology using K-feldspar 40Ar/39Ar, zircon and apatite fission track and (U–Th)/He datings. The Mont-Louis granite samples experienced a long period of protracted cooling reflecting a lack of thermo-tectonic activity in this area from Late Palaeozoic to Early Cenozoic, followed by cooling from 55–60 Ma to Late Eocene at a mean rate of 15–20°C/Ma in the final stage. This cooling stage corresponds to Têt fault reactivation with a reversed component, promoting exhumation of the Mont-Louis roof zone contemporaneously with the south-vergent Pyrenean thrusting. In the Canigou-Carança massif, the main cooling event occurred from 32 to 18 Ma at a maximum rate of 30°C/Ma during Early Oligocene followed by a more moderate rate of 3°C/Ma from Late Oligocene to Early Burdigalian, coeval with the normal reactivation of the Têt fault in brittle conditions that accommodated the final exhumation of the massif during the opening of the Gulf of Lion.  相似文献   
7.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   

8.
The recently developed method of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) allows the determination of 207Pb/206Pb ages of single zircon grains. The main advantages of the method are minimal sample preparation, low cost, and high throughput. In this work we present an analytical routine for geochronological analyses of zircon and monazite by LA-ICPMS and its application to the Ribeira Belt of the Brazilian Orogen in southeastern Brazil. The 207Pb/206Pb ages of one hundred and thirty-seven detrital zircons from amphibolite facies quartzites from three lithotectonic domains in the central Ribeira Belt indicate that they are derived mainly from Paleoproterozoic crust of Transamazonian age (2.0−2.3 Ga). A small number of zircons originated in 2.6−2.9 Ga Archean crust. These results are coherent with 2.1−2.2 Ga and 2.6−3.0 Ga U---Pb ages previously obtained for basement gneisses. The viability of the method to date monazite is also assessed. Monazites from the same quartzite samples yield ages between 2.1 Ga and 0.57 Ga. indicating variable resetting of the U---Pb system during amphibolite facies metamorphism. In contrast, monazite from a basement migmatite and syn-metamorphic granitoids yields ages in the 500–700 Ma range, in general agreement with U-Pb ages of 590-565 Ma for the main metamorphic event.

The LA-ICPMS 207Pb/206Pb ages are coherent and agree with expected results based on previous U---Pb geochronology, and show that the method has immediate applicability. At present, the most significant limitations of the method are the inability to yield reliable U/Pb values, analytical precision in the 1–10% range, and the requirement of grains larger than 80 gmm The method may be advantageous for provenance studies of Precambrian detrital sequences.  相似文献   

9.
Satellite-data allows the magnetic field produced by the dynamo within the Earth’s core to be imaged with much more accuracy than previously possible with only ground-based data. Changes in this magnetic field can in turn be used to make some inferences about the core surface flow responsible for them. In this paper, we investigate the improvement brought to core flow computation by new satellite-data based core magnetic field models. It is shown that the main limitation now encountered is no longer the (now high) accuracy of those models, but the “non-modelled secular variation” produced by interaction of the non-resolvable small scales of the core flow with the core field, and by interaction of the (partly) resolvable large scales of the core flow with the small scales of the core field unfortunately masked by the crustal field. We show how this non-modelled secular variation can be taken into account to recover the largest scales of the core flow in a consistent way. We also investigate the uncertainties this introduces in core flows computed with the help of the frozen-flux and tangentially geostrophic assumptions. It turns out that flows with much more medium and small scales than previously thought are needed to explain the satellite-data-based core magnetic field models. It also turns out that a significant fraction of this flow unfortunately happens to be non-recoverable (being either “non-resolvable” because too small-scale, or “invisible”, because in the kernel of the inverse method) even though it produces the detectable “non-modelled secular variation”. Applying this to the Magsat (1980) to Ørsted (2000) field changes leads us to conclude that a flow involving at least strong retrograde vortices below the Atlantic Hemisphere, some less-resolved prograde vortices below the Pacific Hemisphere, and some poorly resolved (and partly non-resolvable) polar vortices, is needed to explain the 1980-2000 satellite-era average secular variation. The characteristics of the fraction of the secular variation left unexplained by this flow are also discussed.  相似文献   
10.
High gamma-radioactivity in carbonates is usually ascribed to uranium of detrital minerals and organic matter, and to thorium and potassium of clays. The present study based on Urgonian marls and marly limestones (France) shows that some of the most radioactive values correspond instead to some ‘pure’ limestones. These peaks are generally associated with a sequence boundary or a maximum flooding surface. Low-level γ-spectrometry and ICP–MS analyses show that although high radioactivities are mostly associated with uranium, there is no obvious correlation between uranium enrichment and lithology. Also, correlation between high radioactivity and argillaceous beds might not be systematic. To cite this article: M.C. Raddadi et al., C. R. Geoscience 337 (2005).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号