首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   1篇
地质学   10篇
自然地理   1篇
  2017年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 171 毫秒
1.
The study investigates the possibility of using carbonatite in the production of precipitated calcium carbonate (PCC). We made use of fresh apatite-rich carbonatites found at the phosphate mining sites at Eppawala, Sri Lanka. Analyses of the fresh carbonatite were performed with the aid of optical microscopy, powder X-ray diffraction (XRD), atomic absorption spectrophotometry (AAS), UV/visible spectrophotometry (UVVS), and thermo gravimetric analysis (TGA). Quicklime obtained from calcinations of carbonatites was used in synthesizing PCC via a lime-soda process. The end product was analyzed with XRD, TGA, AAS, and UVVS. Results revealed that the most common CO3 2? phase available in fresh carbonatites is calcite (>65%). The Ca-rich CO3 2? phase can be distinguished easily from other available minerals because its mode of occurrence in carbonatite matrix is different to that of other minerals. The results of TGA show that the decomposition of CO3 2? phase initiates at about 340°C, which leads to lower energy consumption during calcinations. Post-magmatic hydrothermal process may have been the cause of the formation of thermally unstable CO3 2? phases. Hydration of quicklime from the carbonatite yields much higher Ca2+ in the solution than from marble under the same experimental conditions. The synthesized PCC particles are in the calcite polymorphic form. The purity of PCC varies from 96 to 98 wt%. The maximum precipitable CaCO3 from 1 g of quicklime is about 1.1 g. Hence, fresh carbonatites has great economic potential for the production of PCC.  相似文献   
2.
Farming is the major source of income for the villagers of North-central Sri Lanka. However, chronic kidney disease of unknown etiology is a major health hazard in the area and it is assumed that agricultural contaminants are the major causative agents. This study focuses on the geochemistry of soils in the area to determine possible natural and anthropogenic impacts of the problem. X-ray fluorescence analysis was used to determine the abundance of selected major and trace elements. Results show that geo-enrichment for many elements indicates slight to significant variations between agricultural and non-agricultural soils. Geoaccumulation index (I geo) shows higher pollution levels of Pb and V (2 < I geo < 3) and very lower pollution levels of As, Zn, Cu, Fe and Mn (1 < I geo < 2) in agricultural soils. However, I geo for non-agricultural soils implies lack of contaminations (I geo < 1). Positive correlations of As with Pb and Zn and negative correlations with Cu, Ni and Cr suggest that they may have derived from different sources such as sulfide minerals of basement rocks, fertilizers and agrochemicals. The results of this study suggest that there is no significant threat from As and other trace elements to soils. The accumulation of these elements in agricultural fields may have been effectively controlled by seasonal farming practices. However, there is a potential environmental risk from elements such as Pb and V due to their significant enrichment in soils.  相似文献   
3.
The December 26, 2004 Indian Ocean tsunami was one of the largest in human history, devastating the coastal wetlands of surrounding countries. This study present the chemical analyses of tsunamigenic and pre-tsunami sediments from Hikkaduwa and Hambantota lagoons in southern Sri Lanka, to assess their geochemical composition, their source, and subsequent environmental impacts. Principal component analysis of the tsunami sediments shows that 42% of the total variance is accounted for calcium oxide and Sr. That is, the tsunami deposits are rich in biogenic phases derived from shallow marine sediments. High organic matter contents of the tsunami sediments of up to 80 wt% also support this interpretation. The association of chlorine (<9.4 wt%), brome (<170?mg/kg), arsenic (<17?mg/kg), iron (III) oxide (<12.9 wt%) and sulfur (<7.6 wt%) accounts for 33% of the variance, reflecting higher salinity. This further suggests that the sediments were mainly derived from a marine environment, rather than from non-marine sands and/or soils. Immobile element contents and relations (thorium, scandium and zirconium) suggest that the tsunami sediment source was mostly felsic in composition, with some mafic component, and mixed with predominantly shallow marine shelf or slope sediments. Additional compositional variations in the tsunami sediments in both lagoons may be associated with variations of wave strength along the coast and by the morphology of the continental shelf. Lower elemental abundances in Hambantota lagoon sediments compared to Hikkaduwa equivalents may thus reflect a greater non-marine component in the former, and greater shelf sediment component in the latter.  相似文献   
4.
Geochemical variations in stream sediments (n = 54) from the Mahaweli River of Sri Lanka have been evaluated from the viewpoints of lithological control, sorting, heavy mineral concentration, influence of climatic zonation (wet, intermediate, and dry zones), weathering, and downstream transport. Compositions of soils (n = 22) and basement rocks (n = 38) of the catchment and those of <180 μm and 180–2000 μm fractions of the stream sediments were also examined. The sediments, fractions, soils and basement rocks were analyzed by X-ray fluorescence to determine their As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc, Fe2O3, TiO2, MnO, CaO, P2O5 and total sulfur contents. Abundances of high field strength and ferromagnesian elements in the sediments indicate concentration of durable heavy minerals including zircon, tourmaline, rutile, monazite, garnet, pyriboles, and titanite, especially in <180 μm fractions. The sediments show strong correlation between Ti and Fe, further suggesting presence of heavy mineral phases containing both elements, such as ilmenite and magnetite. The basement rocks range from mafic through to felsic compositions, as do the soils. The river sediments lack ultrabasic components, and overall have intermediate to felsic compositions. Elemental spikes in the confluences of tributary rivers and high values in the <180 μm fractions indicate sporadic inputs of mafic detritus and/or heavy minerals to the main channel. Al2O3/(K2O + Na2O) and K2O/Na2O ratios of the sediments and LOI values of the soils correlate well with the climatic zones, suggesting intense weathering in the wet zone, lesser weathering in the intermediate zone, and least weathering in the dry zone. Low Sr and CaO contents and Cr/V ratios in stream sediments in the wet zone also suggest climatic influence. Fe-normalized enrichment factors (EFs) for As, Pb, Zn, Cu, Ni and Cr in stream sediments in the main channel are nearly all <1.5, indicating there is no significant environmental contamination. The chemistry of the sediments, rocks and the soils in the Mahaweli River are thus mainly controlled by source lithotype, weathering, sorting, and heavy mineral accumulation.  相似文献   
5.
The apatite-bearing carbonate rocks at Eppawala, Sri Lanka occur as massive, discontinuous bodies in a Precambrian, high-grade metamorphic terrain, which weather to form economically important phosphate deposits. The ore bodies at Eppawala contain =42% P 2O 5, and citric acid solubility of different components varies from 4 to 6%. The parent rocks are mainly made up of calcite, dolomite and apatite, with lesser amounts of ilmenite, magnetite, pyrite, forsterite, phlogopite, enstatite, magnesite, diopside, tremolite and spinel. Most of minerals show an euhedral habit, with a wide range of crystal sizes (from a few millimetres to several decimetres). The Eppawala rocks are characterised by low silica (=0.41%), high phosphorous (=10.58%) and high strontium content (2,960–6,819 ppm). Concentrations of light rare-earth elements in these rocks are comparably higher than those of marbles. The REE fractionation of these rocks is pronounced, and La/Yb ratios vary between 14 and 43. Both apatite and calcite show markedly elevated strontium levels (=0.6%). The d 13C PDB and d 18O SMOW values of the carbonates are in the range of –3.4 to –2.2 and 7.7 to 16.4‰ respectively. The euhedral habit, as well as the presence of major quantities of apatite and considerable amounts of iron-bearing minerals suggest that the ore host rock has genetic links to an igneous source rather than to an intensely metamorphosed limestone. The higher light REE contents of the rocks, compared to marbles, also argue against a metamorphic or sedimentary origin. The Sr/Mn and Ce/La ratios in the apatite are ~40 and ~2 respectively, suggesting that they were formed in a carbonatite magma. The markedly increased REE concentrations in the bulk chemistry of the rocks have been shown to be mainly controlled by the content of phosphate minerals. Compared to most carbonatites, the Eppawala rocks are generally depleted in selected trace elements, particularly Ba, Nb, Th, V, U and Zr. This depletion may be due to either a primary infertility of the parent magma with regard to such trace elements, or it is a result of fractional crystallisation during the rock formation. The stable isotope ratios do not plot within the defined "mantle carbonatite box", but still lie within the broader range of carbonatitic rocks. With these data at hand, it can be readily argued that the mode of occurrence, petrography and geochemistry of the Eppawala apatite-bearing carbonates provide conclusive evidence of their carbonatitic origin.  相似文献   
6.
Chemical characterization has been made of groundwater bodies at 294 locations in four village districts in north-central and northwestern Sri Lanka, with special focus on fluorine contamination. High fluoride contents in groundwater are becoming a major problem in the dry zone of Sri Lanka, and dental fluorosis and renal failures are widespread. Field measurements of temperature, pH, and electrical conductivity were made during sampling. Chemical analyses of the water samples were later made using atomic absorption spectroscopy, spectrophotometry, and titration. Fluoride concentrations in the study area vary from 0.01 to 4.34 mg/l, and depend on pH and the concentrations of Na, Ca, and HCO3 . Basement rocks including hornblende biotite gneiss, biotite gneiss, and granitic gneiss seem to have contributed to the anomalous concentrations of fluoride in the groundwater. Longer residence time in aquifers within fractured crystalline bedrocks may enhance fluoride levels in the groundwater in these areas. In addition, elevated fluoride concentrations in shallow groundwater in intensive agricultural areas appear to be related to the leaching of fluoride from soils due to successive irrigation.  相似文献   
7.
Quaternary sediment deposits are well exposed along the eastern coastal margin of Sri Lanka. Systematic trace fossil studies along with sediment characteristics have been carried out for the first time to interpret the paleoenvironment that prevailed during Quaternary sedimentation in eastern Sri Lanka. The trace fossils Thalassinoides, Skolithos and Polykladichnus have been recognized about 5m above the present mean sea level. Features of the major trace fossil, Thalassinoides, indicate that it was formed by Thalassinidean shrimp Calianassa. Isolated, vertical to steeply inclined, cylindrical to sub cylindrical tubes with thin internal wall lining and inner wall striations of Skolithos and Polykladichnus show that they were formed by polychaetes. The typical characteristic of Polykladichnus isY-shaped branching with slight enlargement at junctions. Morphology and association of burrows as well as mineralogy, grain size and roundness of sediments indicate that the environment prevailed was marine soft grounds of the intertidal zone. Presence of preserved fine-scale features of burrows indicate that the bioturbated sandy tidal flat was suddenly exposed to the tropical environment due to sea level regression in Quaternary periods. Due to the microbial activities of wall linings, burrows were preserved and it was supported by other microbial activities that produced secondary iron bearing minerals that suffered subsequent oxidation. The bio-origination of red sediments of eastern coastal area of the present study can be used to interpret the debatable origin of the red beds found in northwestern and southeastern coastal areas of the island.  相似文献   
8.
The concentrations of Br and I in marine sediments have been used to categorize the sedimentary environments of different coastal regions of the world with respect to organic matter contents. The present study uses the concentrations of Br, I and P2O5 of different marine settings as a new proxy to interpret the depositional environments. A total of 150 coastal lagoon sediment samples (suspended sediments, surface sediments and sediment cores) were analyzed for Br, I and P2O5 concentrations by X-ray fluorescence spectrometry. They were compared with the Br, I and P2O5 concentrations of the 2004 Indian Ocean tsunami sediments. Sediments from various sources are separately clustered in I–Br plot and a trivial negative correlation is found for the whole plot. A similar correlation pattern exists in the I–P2O5 diagram. This correlation is explained by the distribution of marine plants (higher and lower) in different sedimentary environments of the coastal profile. Therefore, the concentration of I and its relation to P2O5 can be used as a tool to identify sediment depositional environments in marine settings.  相似文献   
9.
The study on the evolution of groundwater sources has arisen because of growing concern about deterioration of groundwater resources due to overexploitation. The chemical nature of a coastal aquifer depends on the initial composition of aquifer media, internal geochemical processes and external chemical inputs. Therefore, geochemical characteristics of an aquifer can be used as indicative components on elaborating the origin of aquifer media and its evolutionary processes. This study was aimed at understanding the evolution of Quaternary coastal aquifers of the Kalpitya area, Sri Lanka, by studying groundwater quality and aquifer media. The textural, mineralogical and chemical characteristics of aquifer media and chemical nature of groundwater of the area imply that the aquifer media may not have been derived from marine processes and paleo coastal formations of the western coast but are indicative of a fluvial origin due to past strong fluvial processes. Fluviatile sand depositions had taken place initially and with the gradual sea level rise, deposits were transported, sorted and then re-deposited to form barrier islands parallel to the coast. These have evolved to the present state during the Quaternary period. Intermittent climatic changes caused several changes in the depositional pattern of the aquifer material and the chemical nature of the aquifer. Present day groundwater geochemistry indicates an evolution of a fresh water aquifer with relics of ionic constituents showing paleo geochemical processes that were active during the evolution. In addition, anthropogenic activities have also significantly altered the geochemical nature of groundwater in the present aquifer system.  相似文献   
10.
Field and petrographic investigations, cathodoluminescence (CL) studies as well as microprobe analyses of major rock-forming minerals were conducted to establish the crystallization processes in the Eppawala carbonatites, Sri Lanka. The well preserved magmatic textures and crystal morphologies combined with the chemistry of apatite, calcite and dolomite indicate two major stages of crystal growth, which were accompanied by dynamic crystallization conditions. Initially, nucleation of apatite, ilmenite and possibly olivine was associated with rapid crystal growth during slow cooling of the carbonatite melt at depth. The heat loss through the roof and crystallization processes induced the development of turbulent convective currents, which in turn prevented further nucleation and growth of crystals and led to the dispersion of these earlier formed crystals within the magma chamber. Then, rapid upward movement of magma along structural weaknesses led to (i) the transport of mineral clusters, (ii) deformation of ilmenite, (iii) fracturing of apatite and (iv) the emplacement of the carbonatite melt as dykes. Here, the conditions were favourable for the simultaneous crystallization of magnetite, calcite and dolomite in a non-turbulent environment. Subsequent subsolidus alteration caused the hydrothermal overprint of the documented mineral assemblages, particularly along grain boundaries. The study demonstrates that detailed textural examinations of carbonatites combined with mineral chemical analyses and CL investigations can reveal the crystallization processes within carbonatite melts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号