首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  国内免费   2篇
测绘学   5篇
大气科学   3篇
地球物理   19篇
地质学   41篇
海洋学   11篇
天文学   13篇
自然地理   1篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   2篇
  2014年   1篇
  2013年   10篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有93条查询结果,搜索用时 333 毫秒
1.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   
2.
Basal part of the Gondwana Supergroup represented by Talchir and Karharbari Formations (Permo-Carboniferous) records an abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment. The contact between the two is an unconformity. Facies analysis of the glacio-marine Talchir Formation reveals that basal glaciogenic and reworked glaciogenic sediments are buried under storm influenced inner and outer shelf sediments. Facies associations of the Karharbari Formation suggest deposition as fluvio-lacustrine deposits in fault-controlled troughs. An attempt has been made in this paper to explain the sedimentation pattern in Talchir and Karharbari basins, and the abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment in terms of glacio-isostacy.  相似文献   
3.
International Journal of Earth Sciences - In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age...  相似文献   
4.

The relevance of groundwater hydrogeochemistry to explain the occurrence and distribution of arsenic in groundwater is of great interest. The insightful discussions on the control of shallow groundwater (< 50 m) hydrogeochemistry in arsenic mobilization are known to be a viable tool to explain the arsenic menace in shallow groundwater. The present investigation emphasizes the hydrogeochemical driver and/or control over the reductive dissolution of Fe-bearing host minerals and thereby releasing arsenic into the shallow groundwater of the study area. The study suggests that hydrogeochemical evolution is mainly governed by carbonate minerals dissolution, silicate weathering, and competitive ion-exchange processes in the shallow aquifers (< 50 m). The present study also indicates the prevalence of carbonate minerals dissolution over silicate weathering. The emergence of Cl concentration in the shallow groundwater founds the possibilities of anthropogenic inputs into the shallow aquifers (< 50 m). The reducing environment in shallow aquifers (< 50 m) of the study area is evident in the reductive dissolution of Fe- bearing shallow aquifer minerals which absorb arsenic in the solid phase and mobilize arsenic onto shallow groundwater. The study opted for many statistical approaches to delineate the correlation among major and minor ionic constituents of the groundwater which are very helpful to understand the comprehensive mechanism of arsenic mobilization into shallow groundwater.

  相似文献   
5.
Trace-element geochemistry of sandstones are being used to determine provenance. We have conducted preliminary and limited experiments to determine to what extent daughter sands retain the geochemical signature of parent rocks. Six sets of first-order stream sediments, soils from adjacent slopes, and a variety of parent rocks were collected from southwestern Montana, U.S.A. Sampling in a low-relief area ensured that climate and residence time of soils on slopes could be eliminated as variables. Sand-size fractions of stream sediments and soils, and the corresponding parent rocks (granodiorite, quartz monzonite, granite gneiss, biotite-tonalite gneiss and amphibolite) were analyzed for most major elements and selected trace elements. Petrologic modal analysis of the parent rocks and the 0.25–0.50-mm fraction of each sand was done to monitor major mineralogic control, if any, on chemical compositions of the samples.

Our data show that the abundances of the Si and Al in sediments do not discriminate provenance. Abundances of Ca, Mg, Fe and Ti may broadly distinguish between sands derived from metamorphic and igneous source rocks, at least in the area studied. Differences in abundances of the Ba and Th, and the ratio of La/Lu between granitic, tonalitic and amphibolitic parent rocks are preserved in the daughter sediments that we studied. However, the size of the Eu anomaly in the REE patterns of different daughter sediments is not diagnostic of parent rocks. Abundances of Co and Sc distinguish between sediments derived from felsic and mafic rocks. A better provenance discrimination is obtained if the ratios La/Sc, Th/Sc, La/Co, Ba/Sc and Ba/Co are used.

Petrologic modal data show that mineral contents and chemical compositions of parent rocks are compatible with each other. The chemical composition of the sands may be roughly correlated to the petrological modal data but the abundances of some minor and trace elements of sediments cannot be inferred from modal mineralogy. This is expected because these elements may concentrate in accessory minerals and/or may weather out into aqueous or clay mineral fractions; it is also compatible with conclusions of previous studies that some of these elements do not reside in sand-size fractions of siliciclastic sediments.  相似文献   

6.
For a pure phase at equilibrium with a polycomponent melt, two sets of expressions can be derived; one expressing its activity as a function of enthalpy, entropy, heat capacity and temperature, and the other by coupling a Flory-Huggins' polymerisation model with the van Laar heat of mixing term. Interaction parameters for binary and ternary systems have been computed at 1 bar by equating these two expressions. Assuming the interaction parameter to be independent of temperature, equilibrium temperatures at higher pressures can be calculated by an iterative procedure. Such retrieval calculations were carried out in simple eutectic, volatile-free systems like CaAl2Si2O8-CaMgSi2O6, Mg2SiO4-TiO2, MgSiO3-TiO2, Mg2SiO4-CaMgSi2O6, NaAlSi3O8-SiO2 and CaAl2Si2O8-CaMgSi2O6-Mg2SiO4. The close agreement between the theoretically retrieved and the experimentally determined equilibrium temperatures testifies to the validity of the model at higher pressures. The successful application of the model to simple eutectic, binary and ternary systems involving vastly dissimilar phases without imposing added constraints implies that it can be possibly extended to hitherto unknown systems provided the thermodynamic parameters of the phases involved are known.  相似文献   
7.
An analytical form for the source function is formulated by comparing the fetch-limited approximation of the Ocean Wave Transport equation and the empirical equation for the fetch-dependent wave forecast nomograms. The source function thus generated has been utilised in the numerical model based on Toba’s formulation of wave transport equation and tested for the seas around the Indian subcontinent (5°S to 25°N latitude; 45°E to 100°E longitude). The grid averaged hindcast wave heights are found to be moderately matching with the GEOSAT altimeter measured significant wave heights of the 1987–1989 period, particularly for waves higher than 1 meter.  相似文献   
8.
Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil cores were collected in dune/interdune settings in the arid Thar Desert (near Jaisalmer) and in rain-fed (nonirrigated) and irrigated cropland in the semiarid desert margin (near Jaipur). Recharge rates were also simulated using unsaturated zone modeling. Recharge rates in sparsely vegetated dune/interdune settings in the Jaisalmer study area are 2.7–5.6 mm/year (2–3% of precipitation, 165 mm/year). In contrast, recharge rates in rain-fed agriculture in the Jaipur study area are 61–94 mm/year (10–16% of precipitation, 600 mm/year). Minimum recharge rates under current freshwater irrigated sites are 50–120 mm/year (8–20% of precipitation). Nitrate concentrations are low at most sites. Similarity in recharge rates based on SO4 with those based on Cl is attributed to a meteoric origin of SO4 and generally conservative chemical behavior in these sandy soils. Modeling results increased confidence in tracer-based recharge estimates. Recharge rates under rain-fed agriculture indicate that irrigation of 20–40% of cultivated land with 300 mm/year should be sustainable.  相似文献   
9.
The temporal‐spatial resolution of input data‐induced uncertainty in a watershed‐based water quality model, Hydrologic Simulation Program‐FORTRAN (HSPF), is investigated in this study. The temporal resolution‐induced uncertainty is described using the coefficient of variation (CV). The CV is found to decrease with decreasing temporal resolution and follow a log‐normal relation with time interval for temperature data while it exhibits a power‐law relation for rainfall data. The temporal‐scale uncertainties in the temperature and rainfall data follow a general extreme value distribution and a Weibull distribution, respectively. The Nash‐Sutcliffe coefficient (NSC) is employed to represent the spatial resolution induced uncertainty. The spatial resolution uncertainty in the dissolved oxygen and nitrate‐nitrogen concentrations simulated using HSPF is observed to follow a general extreme value distribution and a log‐normal distribution, respectively. The probability density functions (PDF) provide new insights into the effect of temporal‐scale and spatial resolution of input data on uncertainties involved in watershed modelling and total maximum daily load calculations. This study exhibits non‐symmetric distributions of uncertainty in water quality modelling, which simplify weather and water quality monitoring and reducing the cost involved in flow and water quality monitoring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
Abstract— We report results of our investigation of the relationship between values of Is/FeO (relative concentration of nanophase Fe0 divided by total FeO content), glass abundance, total Fe content, and degree of digestion of <20 μm clasts for 22 individual agglutinates (250–1000 μm) from the mature Apollo 16 soil 61181 (Is/FeO = 82 units in the <250 μm fraction). Agglutinates are important products of space weathering on the Moon, and they influence spectral observations at visible and near-IR wavelengths. Values of Is/FeO for individual agglutinates (250–1000 μm) within this single soil span a range from 3 to 262 units which is larger than the range observed for all Apollo 16 bulk soils (~0 to 110 units). No correlation was observed between Is/FeO and glass abundance and FeO concentrations for either agglutinitic glass or whole agglutinate particles under investigation. Our results suggest that the variation in Is/FeO for agglutinates from a single soil may be in part a consequence of natural mixing processes on the Moon that produce highly-variable environments (with respect to surface exposure) for agglutinate formation and in part to variable kinetics of reactions in an agglutinate melt, which are influenced by a variety of factors including melt composition, temperature, impactor velocity, and quench rate. We cannot exclude but do not see evidence for other processes including addition of exotic agglutinates, micrometeoritic bombardment into compositionally-diverse microtargets, recycling of agglutinates, preferential melting of very fine soil particles, and production of nanophase Fe0 in amorphous rims of very fine irradiated lunar grains contributing to the observed variation of Is/FeO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号