首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
大气科学   2篇
地质学   11篇
天文学   1篇
自然地理   1篇
  2020年   1篇
  2015年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Spheroidal dolomite cements are a pervasive and distinctive feature in five exposed lithologies of different geological age in Kuwait. The spheroids range in diameter from ~5–350 μm, have concentric zones and nuclei of fluid inclusions with or without a radial fabric, and compositions varying from near stoichiometric to Ca56 Mg44. All spheroids appear to be primary in origin with no evidence of replacement. Some concentric zones show selective calcitization and/or leaching. Most of these features are confined to within 30 m of the surface. Consequently, spheroidal dolomites recognizable at depth in ancient sequences may be indicative of a local unconformity. The dolomite distributions are areally correlative with known areas of hydrocarbon seepage, the latter being confined to prominent oil field anticlinal trends. It is proposed that the dolomitization was caused by groundwaters carrying hydrocarbons to the surface, which were then oxidized to carbon dioxide. The gas bubbles may have acted as nuclei for spheroid growth with a possible inducement by bacteria which have an affinity for hydrocarbons. The implication is that the regional distribution of spheroidal dolomites may be an indicator of a potential reservoir facies at depth.  相似文献   
2.
Biomass and respiratory ETS activity of microplankton in the Barents Sea   总被引:1,自引:0,他引:1  
The activity of the respiratory electron transport system (ETS) of microplankton was measured in the Central Barents Sea during summer 1988. In vitro ETS activity increased with assay temperature between 0 and 2°C, as reported for other enzyme systems in plankton. The higher in situ activities were observed near the surface (upper 10-25 m) and were associated with chlorophyll a maxima. Respiratory activity in the upper 60 m accounted for 40-60% of the total column respiration. The activities (0-100 m) were lower than oxygen consumption rates reported in the Canadian Arctic, mainly due to lower phytoplankton biomass. They were higher than ETS activity measured in the Weddell Sea (Antarctic Ocean). A high detrital versus total microplankton mass accounted for the low activity related to particulate organic carbon (POC). In general, the levels of respiratory ETS activity were in the range reported for temperate oligotrophic oceanic regions.  相似文献   
3.
SAWANT  H. S.  ROSA  R. R.  CECATTO  J. R.  GOPALSWAMY  N. 《Solar physics》1997,171(1):155-159
Here, we report on impulsive solar radio bursts observed for the first time with high time/spectral resolution in the range 18 to 23 GHz. Using observational parameters and assuming nonthermal gyrosynchrotron emission from energetic electrons in a loop structure, we have estimated the density of nonthermal electrons, magnetic field, and dimension of the source along the line of sight.  相似文献   
4.
Lake Estanya is a small (19 ha), freshwater to brackish, monomictic lake formed by the coalescence of two karstic sinkholes with maximum water depths of 12 and 20 m, located in the Pre‐Pyrenean Ranges (North‐eastern Spain). The lake is hydrologically closed and the water balance is controlled mostly by groundwater input and evaporation. Three main modern depositional sub‐environments can be recognized as: (i) a carbonate‐producing ‘littoral platform’; (ii) a steep ‘talus’ dominated by reworking of littoral sediments and mass‐wasting processes; and (iii) an ‘offshore, distal area’, seasonally affected by anoxia with fine‐grained, clastic sediment deposition. A seismic survey identified up to 15 m thick sedimentary infill comprising: (i) a ‘basal unit’, seismically transparent and restricted to the depocentres of both sub‐basins; (ii) an ‘intermediate unit’ characterized by continuous high‐amplitude reflections; and (iii) an ‘upper unit’ with strong parallel reflectors. Several mass‐wasting deposits occur in both sub‐basins. Five sediment cores were analysed using sedimentological, microscopic, geochemical and physical techniques. The chronological model for the sediment sequence is based on 17 accelerator mass spectrometry 14C dates. Five depositional environments were characterized by their respective sedimentary facies associations. The depositional history of Lake Estanya during the last ca 21 kyr comprises five stages: (i) a brackish, shallow, calcite‐producing lake during full glacial times (21 to 17·3 kyr bp ); (ii) a saline, permanent, relatively deep lake during the late glacial (17·3 to 11·6 kyr bp ); (iii) an ephemeral, saline lake and saline mudflat complex during the transition to the Holocene (11·6 to 9·4 kyr bp ); (iv) a saline lake with gypsum‐rich, laminated facies and abundant microbial mats punctuated by periods of more frequent flooding episodes and clastic‐dominated deposition during the Holocene (9·4 to 0·8 kyr bp ); and (v) a deep, freshwater to brackish lake with high clastic input during the last 800 years. Climate‐driven hydrological fluctuations are the main internal control in the evolution of the lake during the last 21 kyr, affecting water salinity, lake‐level changes and water stratification. However, external factors, such as karstic processes, clastic input and the occurrence of mass‐flows, are also significant. The facies model defined for Lake Estanya is an essential tool for deciphering the main factors influencing lake deposition and to evaluate the most suitable proxies for lake level, climate and environmental reconstructions, and it is applicable to modern karstic lakes and to ancient lacustrine formations.  相似文献   
5.
The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain   总被引:1,自引:0,他引:1  
The Sanabria appinitic rocks and host migmatites form an unusual,non-peri-batholithic complex in which all the typical membersof the appinite suite are present. It differs from most appiniticcomplexes in the deeper level of emplacement and the close temporaland spatial association with migmatites. Consequently, manyin situ relationships that resulted from the invasion of maficmagma into a crustal anatectic zone are extremely well preserved.The complex shows unequivocal relations between members of theappinitic suite and between these and migmatites derived byanatexis of a gneissic formation (Ollo de Sapo gneiss). Theserelations point to derivation of monzodiorites and biotite dioritesby hydrous basalt fractionation combined with fluid-assistedmelting of the crustal rocks surrounding the appinitic intrusions.This hydrous basic magma may be derived from an enriched regionof the mantle associated with subduction. Petrogenetic modelshave been tested using a combination of field relations andgeochemical data. Despite the complexity of the processes involved,it is concluded that water played an important role in the petrogenesisof the intermediate and mafic magmas. Reaction between monzodioritemelts and the host migmatites was responsible for the generationof a range of intermediate rocks within the complex. The needfor water to facilitate magma generation in both the mantleand the crust suggests that melting is linked with subduction.This interpretation has important implications because appiniticmagmatism may be considered as indicative of subduction processesinvolved not only in the generation of the mafic end-membersof the suite, but also in the generation of batholiths withwhich the appinitic rocks are spatially and temporally associated. KEY WORDS: appinite; monzodiorite; migmatite; Variscan orogen; Iberian massif  相似文献   
6.
Outcrops and cored/counter‐flushed boreholes in the coastal area between Espinho and Aveiro (north‐west Portugal) were investigated to reconstruct the changing patterns of sedimentation during the Late Pleistocene–Holocene. To obtain a common comparison basis, the grain‐size data from outcrop and borehole samples were analysed. The outcrops and the cored parts of the boreholes were dated by radiocarbon and optically stimulated luminescence. The results show that, on top of pebble‐rich beds of fluvial origin, a wet aeolian dune and interdune environment was active during the later part of the Pleistocene, turning to dry aeolian at the transition to the Holocene. The data indicate also that aeolian accumulation was controlled by vegetation changes (climate) and groundwater table fluctuations. During the Holocene, a podzol formed on the Pleistocene dunes and extensive vegetation precluded major aeolian accumulations. Remobilization of sand started again because of human deforestation and – last but not least – the Little Ice Age.  相似文献   
7.
Sedimentary rocks are rarely preserved on reefless volcanic oceanic islands because their sediments are mostly exported from coastal areas towards the deep sea and such islands typically undergo subsidence. In contrast, the exceptional geological record of the uplifted Santa Maria Island (Azores) provides a unique opportunity to gain insight on such coastal systems. This study focuses on a locality at Ponta do Cedro (eastern Santa Maria Island), which features a series of marine fossiliferous sediments wedged between steep lava deltas. As demonstrated by local structure, these sediments correspond to clinoforms deposited on the steep submarine slope of an active volcanic island, implying transport from shallow waters to greater depths and subsequent colonization by benthic communities. Rapid volcanic progradation eventually sealed the deposits, allowing for their preservation and providing a rare snapshot of the ecology during those intervals, in addition to insights on sedimentary dynamics along submarine island slopes. This study reveals spatial relationships between wedges of sedimentary bodies encapsulated by lavas in the Ponta do Cedro section, and interprets depositional processes preserved in those strata based on sedimentological and palaeontological data. The dynamics of the environment are mostly related to relative sea-level changes, intense volcanic activity and regional uplift during the Neogene.  相似文献   
8.
Aerosol properties of mineral particles in the far field of an African desert dust outbreak were investigated that brought Saharan dust over the Mediterranean in different layers to Portugal. The measurements were performed inside the project Desert Aerosols over Portugal (DARPO) which was linked to the Saharan Mineral Dust Experiment (SAMUM). The maximum particle mass concentration was about 150 μg m−3 and the corresponding scattering coefficient was 130 M m−1 which results in a mass scattering efficiency of 0.87 m2 g−1. The aerosol optical depth reached values up to 0.53 and the lidar ratio was between 45 and 50 in the whole dust loaded column. A comparison between particle size distributions and refractive indices derived from different instruments and models showed a general good agreement but some minor differences could also be observed. Measurements as well as calculations with a particle transport model suggest that there is a relatively higher concentration of very large particles in the upper region of the dust layer than on the surface which is likely connected with meteorological conditions at the observational site (Évora, Portugal).  相似文献   
9.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号