首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2011年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Four boulder samples from the Piano del Praiet frontal moraine in the Gesso della Barra Valley (Maritime Alps) have been 10Be dated. The results give a weighted mean age of 11 340±370 (870) yr, constraining the frontal moraine to the Egesen glacial stadial, during the Younger Dryas cold phase. By applying the same 10Be production rate to other Egesen moraines previously dated in the Alps, we obtain similar ages for all of them. This suggests a synchroneity of the Egesen deglaciation in the European Alps at the end of the Younger Dryas. From the palaeoshape of the Egesen glacier, reconstructed by means of geomorphological mapping, an Equilibrium Line Altitude depression (δELA) of −520 to −530 m, with respect to the present-day ELA, and of −260 to −320 m, with respect to the Little Ice Age ELA, has been calculated. Comparison with other Alpine sector δELAs indicates that the Maritime Alps experienced humid climatic conditions during the Younger Dryas.  相似文献   
2.
Following introduction of the term ‘nummulite bank’, there has been debate regarding interpretation of these types of deposits as autochthonous (automicrite) or allochthonous (detrital micrite). These banks are made up of large foraminifera and ill‐defined fine‐grained components. The fine‐grained components consist mainly of micrites. The recognition of automicrite has deep implications for the synsedimentary cementation and stabilization of the bank. In order to distinguish between automicrite and detrital micrite, the nanomorphology, geochemistry and organic matter remains in the microfacies of a nummulite bank in the Middle Eocene of Monte Saraceno (Gargano, Southern Italy) were analysed. Optical and scanning electron microscope investigations showed that the micrites have been recrystallized to aggrading microsparite. Epifluorescence observations on selected micrite/microsparite areas with peloidal texture revealed the presence of organic matter. Scanning electron microscope analyses on epifluorescent micrites showed that the microbial peloids have smaller crystal sizes than those in organic matter‐depleted areas. The geochemical characterization of extracted organic matter, performed through the functional group analyses by Fourier transform‐infrared spectroscopy, shows strong prevalence of the aromatic fraction over the aliphatic and carboxylic ones. These characteristics of organic compounds indicate both their thermal maturation and their likely derivation from degradation of bacterial communities. The local presence of peloidal anti‐gravity textures, bright epifluorescence and organic molecules in clotted peloidal areas suggest that the metabolic activity of microbial communities could have induced precipitation of these micrites and, consequently, the syndepositional cementation of the nummulite bank. This type of cementation can rapidly stabilize sediments and promote the depositional bank geometry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号