首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
综合类   5篇
  2019年   4篇
  2018年   1篇
排序方式: 共有5条查询结果,搜索用时 11 毫秒
1
1.
在恐龙化石发掘过程中不仅机械扰动会直接导致化石或围岩的破碎,应力释放也会导致化石及围岩表面裂隙的产生及扩张,这些节理裂隙又为水和空气的活动提供了通道,使风化破坏作用更加迅速。作者以分层开挖理论为基础,建立了模拟化石开挖过程的数值模型。通过计算机模拟开挖过程中0m、11m、14m、19m四个深度的等效应力变化过程和XZ方向应力的变化过程发现:开挖前后化石表面的最大等效应力差达到0.34MPa,围岩表面的最大等效应力差达0.3MPa;埋深越大的化石,在开挖露出地面后等效应力的回弹现象越明显,即应力释放越严重;虽然化石表面所受剪应力不大,但其对化石风化的影响比在压应力条件下要大的多,这是导致卸载裂隙产生的主要原因。因此,恐龙化石发掘要逐层缓慢开挖,使化石逐渐达到新的应力平衡,以便减少应力快速释放对化石造成的风化破坏,特别是要做好护坡,最大限度地防止剪应力的产生。  相似文献   
2.
由热应力引起的热破裂作用是造成恐龙化石破坏的一个重要因素。在太阳照射条件下,由于受热不均匀及日照的长久往复循环作用,使得化石表面发生热破裂作用,导致化石表面产生裂缝,加速了恐龙化石风化。采用模拟实验的方式,主要针对恐龙化石试件的物理力学受力变形特性进行研究。通过有限差分软件FLAC3D进行数值模拟,揭示日光辐射造成的恐龙化石温度差异分布对化石风化的影响。试验结果表明:恐龙化石不同部位的温度差异,是造成化石内部热应力分布不均匀的重要原因,热应力的不均匀性导致化石发生热破裂,加速了化石风化受损,因此化石保存要尽量放在恒温环境下,避免化石温度往复变化。  相似文献   
3.
恐龙化石是地史时期保存在地层中的生物遗体或遗迹,一旦因自然原因或经人工发掘暴露地表后,则面临着严重的风化破坏问题,其中最严重的破坏因素主要是来自于太阳光照。化石长期遭受日照影响,周而复始,受热应力作用使化石表面产生裂缝,最终化石整体破碎。化石受热情况不同,包括阳光直射、室内遮阴和化石表面涂保护层三种不同情况下受热。该文从这三种不同情况出发,通过数值模型对化石及围岩对温度的敏感性进行分析研究。研究发现,阳光直射时温度梯度大小和温度梯度产生的温度应力远远大于室内遮阴和涂保护层后的温度梯度和温度应力;不涂保护层,化石部分温度梯度和温度梯度产生的温度应力大于涂保护层温度梯度和温度应力。  相似文献   
4.
导致恐龙化石及围岩风化破坏的因素十分复杂,其自身的物质组成、结构构造、胶结物的类型等内部因素决定了其抵御风化破坏的能力。化石及围岩的物理化学成分越稳定、结构构造越致密完整,其抗风化能力就越强。气温的反复变化以及各种气体、盐类、水溶液和生物的活动等外部因素,是促使恐龙化石或围岩发生风化破坏的直接的原因。这些风化包括物理风化、化学风化和生物风化。它们使组成化石或围岩的矿物成分发生分解、结构构造发生变化,使化石或围岩由整块变成碎块,由坚硬变得疏松,甚至化学成分也发生改变,从而造成了化石或围岩的风化破坏。  相似文献   
5.
在理论分析的基础上,利用试验结果模拟分析单轴压力作用下含裂隙恐龙化石断裂损伤过程。在FLAC3D中采用FISH语言编写了基于体元分析的计算程序,采用弹脆性本构模型,分析了试验过程中恐龙化石的裂纹萌生→扩展→贯通规律和裂隙化石的断裂损伤机制。在单轴压缩作用下,含有裂隙的恐龙化石试件的破坏过程主要分三个阶段:即线性变形阶段、非线性变形阶段和软化阶段,当载荷超过应变峰值强度后,化石内部将生成大量新的诱导裂隙,导致化石内部结构发生剧烈变化。值得注意的是,恐龙化石峰后的强度软化过程非常不稳定,峰值附近的材料力学行为对化石试件内部缺陷的分布十分敏感。试验表明,有裂隙恐龙化石的抗压强度值比无裂隙恐龙化石的抗压强度值小30%,最终的残余抗压强度也略小,在加载应力作用下,相比不含内部裂隙的恐龙化石,内含裂隙的恐龙化石其内部裂隙会迅速大量扩展,加重了恐龙化石的风化程度和破坏速度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号