首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地球物理   7篇
地质学   2篇
天文学   6篇
  2021年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
In this paper, the model of the ring envelope round the primary component and the stream of the gaseous mass flowing from the secondary component to the primary is constructed on the basis of theoretical computations concerning the exchange of the mass between the components of the binary. The paper studies the influence of the gaseous mass on the profiles of spectral lines before and after occultation; the influence of the stream on the profile in case the secondary is near elongation, is also investigated. The line profiles obtained by numerical computations show that their changes caused by outflowing mass should be well detectable from spectrograms taken at particular phase of the binary. Changes in the lines may influence the measurement of radial velocities. The method for distinguishing the influence of the stream from the influence of the ring is described.  相似文献   
3.
The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite–Trondhjemite–Granodiorite (TTG) complexes. As a result, we propose that many, if not all, diamondiferous eclogite xenoliths from Komsomolskaya represent mantle ‘restites’ that preserve chemical signatures of Precambrian oceanic crust.  相似文献   
4.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   
5.
¶rt;am m unau a¶rt;umaua m nu ma a u mum u au. am a uu u ma a a umaua nmua mmu ¶rt; u mu m uauu.

Presented at the Meeting SSG 5.49 of the IAG, Uppsala, August 7, 1978.  相似文献   
6.
Altimetric measurements of the GEOSAT satellite were used for the determination of geopotential scale factorR 0. The geopotential valueW 0 on the geoid surface was then computed (W 0 =GM/R 0).The GEOSAT Geophysical Data Records (GDR's) covering an initial period of the Exact Repeat Mission (ERM) were filtered and processed. The necessary corrections were made in order to allow a precise detection of the sea surface. Gravitational geopotential, rotation and permanent tides were taken into account and the equipotential surface which is the best approximation of the sea surface was found.The determination of the potential valueW 0 on the mean geoid surface in this way is very promising. An associated value withW 0 - the geopotential scale factorR 0 - seems to be a very good Earth dimension defining quantity. Moreover, there are many possible applications ofW 0 (R 0) in modern geophysics.The incorporation of one of these parameters - we now recommendR 0 - into the set of the Primary Geodetic Parameters (PGP) is discussed and suggested.  相似文献   
7.
The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 = 62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G = W 0/c 2 = 6.969290134 × 10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.  相似文献   
8.
There are two modes of gas streams in close binary systems: geometrically thick for low mass transfer rate or geometrically thin for higher mass transfer. Geometrical thickness of the streams is not proportional to the amount of transferred mass. The limit between the two possibilities is discussed.  相似文献   
9.
Summary The geopotential scale factor R 0 =GM/W 0 has been determined on the basis of satellite altimetry as R 0=(6 363 672·5±0·3) m and/or the geopotential value on the geoid W 0 =(62 636 256·5±3) m 2 s –2 . It has been stated that R 0 and/or W 0 is independent of the tidal distortion of surface W=W 0 due to the zero frequency tide.
¶rt;a nmu amumuu u ama amnmuaa R 0 =GM/W 0 =(6 363 672,5±0,3) m u/uu aunmuaa a nmuu¶rt;a W 0 =(62 636 256,5±3) m2 s–2. m, m R 0 u/uu W 0 auum m nm amu a a nuu ¶rt;au nmu W=W 0 .
  相似文献   
10.
Tri-axiality of the Earth,the Moon and Mars   总被引:2,自引:0,他引:2  
Summary Parameters defining the tri-axiality of the Earth, the Moon and Mars are discussed and up-to-date values recommended, as recently computed and submitted to the XVIIth IAG General Assembly (Canberra, December 1979).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号