首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   8篇
自然地理   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   
2.
The Triassic succession of the central Southern Alps (Italy) is stacked into several units bounded by south-verging low-angle thrust faults, which are related to two successive steps of crustal shortening. The thrust surfaces are cut by high-angle extensional and strike-slip faults, which controlled the emplacement of hypabissal magmatic intrusions that post-date thrusts motions. Intrusion ages based on SHRIMP U–Pb zircon dating span between 42 ± 1 and 39 ± 1 Ma, suggesting close time relationships with the earliest Adamello intrusion stages and, more in general, with the widespread calc-alkaline magmatism described in the Southern Alps. Fission-track ages of magmatic apatites are indistinguishable from U–Pb crystallization ages of zircons, suggesting that the intrusion occurred in country rocks already exhumed above the partial annealing zone of apatite (depth < 2–4 km). These data indicate that the central Southern Alps were already structured and largely exhumed in the Middle Eocene. Although we describe minor faults affecting magmatic bodies and local reactivations of older structures, no major internal deformations have occurred in the area after the Bartonian. Neogene deformations were instead concentrated farther south, along the frontal part of the belt.  相似文献   
3.
Deep-seated gravitational slope deformations (DSGSDs) influence landscape development in tectonically active mountain ranges. Nevertheless, the relationships among tectonics, DSGSDs, and topography are poorly known. In this paper, the distribution of DSGSDs and their relationships with tectonic structures and active processes, surface processes, and topography were investigated at different scales. Over 100 DSGSDs were mapped in a 5000 km2 sector of the central Eastern Alps between the Valtellina, Engadine and Venosta valleys. Detailed lineament mapping was carried out by photo-interpretation in a smaller area (about 750 km2) including the upper Valtellina and Val Venosta. Fault populations were also analysed in the field and their mechanisms unravelled, allowing to identify different structural stages, the youngest being consistent with the regional pattern of the ongoing crustal deformation. Finally, four DSGSD examples have been investigated in detail by geological and 2D geomechanical modelling.DSGSDs affect more than 10% of the study area, and mainly cluster in areas where anisotropic fractured rock mass and high local relief occur. Their onset and development is subjected to a strong passive control by mesoscopic and major tectonic features, including regional nappe boundaries as well as NW–SE, N–S and NE–SW trending recent brittle structures. The kinematic consistency between these structures and the pattern of seismicity suggests that active tectonics may force DSGSDs, although field evidence and numerical models indicate slope debuttressing related to deglaciation as a primary triggering mechanism.  相似文献   
4.
Based on its Permian‐Triassic stratigraphic and biotic evolution, we correlate the SE Pamir to the Karakoram terrane, and we consider them equivalent, along with the Central Pamir, to the Qiantang Terrane of Tibet, all of Palaeozoic Gondwanan ancestry. We prove the occurrence of a marked Cimmerian unconformity, documented by lowermost Jurassic deposits suturing intensively faulted and folded Permian and Triassic units, which suggests that the South Pamir collided around the T‐J boundary with the Central Pamir along the Rushan‐Pshart suture. Collision of the Karakoram to the South Pamir happened slightly later along the Wakhan‐Tirich Boundary Zone. Progressive time shifting of deformation can be related to the complex setting of the Cimmerian belt, which was subdivided into minor blocks by incipient oceanic basins, providing strong crustal mobility.  相似文献   
5.
ABSTRACT New stratigraphic and structural data on the turbiditic succession of Chios (Volissos turbidites) suggest that this clastic wedge formed during the Early Carboniferous. These turbidites, fed long-distance by erosion of the Variscan orogen, were most likely deposited in a Palaeotethyan remnant-ocean basin. They were severely deformed and structurally thickened at anchi-metamorphic conditions before the close of the Palaeozoic. Both contractional and layer-parallel extensional structures, high strain rates, and broken-in-matrix fabrics along thick shear zones may suggest deformation at the toe of an accretionary wedge. Stratigraphic, petrographic and structural data indicate that Chios represents the westernmost part of Palaeotethys which escaped the Carboniferous collision between Gondwana and Laurasia, but received great volumes of terrigenous sediments from the Variscan belt, favouring the growth of a large accretionary prism.  相似文献   
6.
Abstract

Complex fault assemblages associated to liquefaction structures have been analyzed in a Pliocene basin located along the Gulf of California. The studied outcrop shows a fossil fault plane formed ill soft flat lying sediments. The liquefaction and fluidification structures have been recognized in voleaniclastic layers deposited ill a lagoonal environment and are potentially related to seismic wave shaking and to successive dewatering along fractures. This strati-graphic record is explained by the progressive development of a seismic fault zone, related to the transtensional regime still active in the Gulf. The present analysis can he considered as an useful case study for the reconnaissance of the different types of structures formed during synsedimentary deformation in hydroplastic conditions.  相似文献   
7.
Summary Comparative measurements of radiation flux components and turbulent fluxes of energy and CO2 are made at two sites in South West Amazonia: one in a tropical forest reserve and one in a pasture. The data were collected from February 1999 to September 2002, as part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). During the dry seasons, although precipitation and specific humidity are greatly reduced, the soil moisture storage profiles down to 3.4m indicate that the forest vegetation continues to withdraw water from deep layers in the soil. For this reason, seasonal changes observed in the energy partition and CO2 fluxes in the forest are small, compared to the large reductions in evaporation and photosynthesis observed in the pasture. For the radiation balance, the reflected short wave radiation increases by about 55% when changing from forest to pasture. Combined with an increase of 4.7% in long wave radiation loss, this causes an average reduction of 13.3% in net radiation in the pasture, compared to the forest. In the wet season, the evaporative fraction (E/Rn) at the pasture is 17% lower than at the forest. This difference increases to 24% during the dry season. Daytime CO2 fluxes are 20–28% lower (in absolute values) in the pasture compared to the forest. The night-time respiration in the pasture is also reduced compared to the forest, with averages 44% and 57% lower in the wet and dry seasons, respectively. As the reduction in the nocturnal respiration is larger than the reduction in the daytime uptake, the combined effect is a 19–67% higher daily uptake of CO2 in the pasture, compared to the forest. This high uptake of CO2 in the pasture site is not surprising, since the growth of the vegetation is constantly renewed, as the cattle remove the biomass.  相似文献   
8.
9.
Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export study were carried out in a micro‐scale heath forest (Campina) catchment in central Amazonia, Brazil. For a 1‐year study period (18 March 2007 until 19 March 2008), rainfall amounted to 3054 mm; of which, 1532 mm was evaporated by the forest (4.1 mm day?1). Rainfall interception loss amounted to 15.6% of gross rainfall. Surface runoff amounted to 485 mm, whereas another 1071 mm was discharged as regional groundwater outflow. Accumulated DOC exports in surface runoff amounted to 15.3 g m?2 year?1, whereas the total carbon exported was 55.9 g m?2. This is much higher than that observed for a nearby tall rainforest catchment in central Amazonia (DOC export < 20 g m?2). As Campina heath forest areas cover a significant proportion of the Amazon Basin, these differences in ecosystem hydrological carbon exports should be taken into account in future studies assessing the carbon budget for the Amazon Basin. Macro‐nutrient exports were low, but those of calcium and potassium were higher than those observed for tall rainforest in the Amazon, which may be caused by a lower retention capacity of the heath forest ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
The integration of structural analyses with 40Ar/39Ar dating of fault-related pseudotachylytes provides time constraints for the reconstruction of the Alpine evolution of the central portion of the South Alpine orogenic wedge. In the northern sector of the belt a Variscan basement is stacked southward on the Permian to Mesozoic cover along regional faults (Orobic and Porcile thrusts). Fault zones, slightly postdating a first folding event of Alpine age, experienced a complex evolution through the ductile and brittle deformation regime, showing greenschist facies mylonites overprinted by a penetrative cataclastic deformation. Generation of fault-related pseudotachylyte veins marks the onset of brittle conditions, lasting up to the youngest episodes of fault activity. 40Ar/39Ar dating of the pseudotachylyte matrix of 9 samples give two separated age clusters: Late Cretaceous (80–68 Ma) and latest Palaeocene to Middle Eocene (55–43 Ma). These new data provide evidence that the pre-Adamello evolution of the central Southern Alps was characterised by the superposition of different tectonic events accompanying the exhumation of the deepest part of the belt through the brittle–ductile transition. The oldest pseudotachylyte ages demonstrate that south-verging regional thrusting in the central Southern Alps was already active during the Late Cretaceous, concurrently with the development of a synorogenic foredeep basin where the Upper Cretaceous Lombardian Flysch was deposited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号