首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   17篇
天文学   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2014年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Geomagnetism and Aeronomy - This paper analyzes the effect of azimuthal proton drift from the nighttime sector of the Earth’s magnetosphere on the characteristics of the pitch-angle...  相似文献   
2.
According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double) auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs) of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1) discrete auroral arcs are always situated polewards from (or very close to) the IB of > 30-keV electrons, whereas (2) the IB of the > 30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm) conditions in the premidnight-nightside (18– 01-h) MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB), the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1) may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.  相似文献   
3.
The data of the geophysical observation complex at Barentsburg observatory on Spitsbergen archipelago, together with the data from other stations and satellite observations, were used to interpret a sharp increase in the frequency interval in the electromagnetic noise spectral resonance structure (SRS) in the 0.1–10 Hz range that took place during a substorm that occurred on December 24, 2005. It has been shown that such a change in SRS is related to a decrease in the electron density in the ionospheric F region, which agrees with the ionospheric Alfvén resonator theory. In turn, a decrease in electron density is probably related to the fact that the station was in the auroral cavity region related to the field-aligned current flowing into the ionosphere.  相似文献   
4.
A case study of the dayside cusp/cleft region during an interval of stationary magnetospheric convection (SMC) on November, 24, 1981 is presented, based on detailed measurements made by the AUREOL-3 satellite. Layered small-scale field-aligned current sheets, or loops, superimposed to a narrow V-shaped ion dispersion structure, were observed just equatorward from the region of the “cusp proper”. The equatorward sheet was accompanied by a very intense and short (less than 1 s) ion intensity spike at 100 eV. No major differences were noted of the characteristics of the LLBL, or “boundary cusp”, and plasma mantle precipitation during this SMC period from those typical of the cusp/cleft region for similar IMF conditions. Simultaneous NOAA-6 and NOAA-7 measurements described in Despirak et al. were used to estimate the average extent of the “cusp proper” (defined by dispersed precipitating ions with the energy flux exceeding 10−3 erg cm−2 s−1) during the SMC period, as ≈0.73∼ ILAT width, 2.6–3.4 h in MLT, and thus the recently merged magnetic flux, 0.54–0.70 × 107 Wb. This, together with the average drift velocity across the cusp at the convection throat, ≈0.5 km s−1, allowed to evaluate the cusp merging contribution to the total cross-polar cap potential difference, ≈33.8–43.8 kV. It amounts to a quite significant part of the total cross-polar cap potential difference evaluated from other data. A “shutter” scenario is suggested for the ion beam injection/penetration through the stagnant plasma region in the outer cusp to explain the pulsating nature of the particle injections in the low- and medium-altitude cusp region.  相似文献   
5.
Yahnin  A. G.  Titova  E. E.  Demekhov  A. G.  Yahnina  T. A.  Popova  T. A.  Lyubchich  A.  Manninen  J.  Raita  T. 《Geomagnetism and Aeronomy》2019,59(6):668-680
Geomagnetism and Aeronomy - Simultaneous observations of ELF/VLF and EMIC waves from Van Allen Probe satellites in the daytime Earth’s magnetosphere and on the ground during multiple...  相似文献   
6.
Different types of proton auroras observed by the IMAGE satellite equatorward of the proton aurora oval are briefly reviewed. These auroras are caused by the precipitation of energetic protons from the Earth’s magnetosphere during the development of the ion-cyclotron instability. In addition to the previously considered types of proton auroras (spots, evening arcs, and dayside flashes), a new type is described: longlasting proton auroras on the dayside. The scheme of interrelation between different proton auroras equatorward of the oval with the distribution of cold plasmaspheric plasma is given.  相似文献   
7.
The development of the auroral bulge during substorms is studied using all-sky data from the dense net of stations and also riometer data. A few features seem to be essential for the interpretation of the expansive phase mechanism. The first is the existence of low energy electron precipitation (auroral arcs with the lower border height near 140 km) polewards of the expanding bulge, suggesting that the bulge often arises and develops on closed field lines. Secondly only the localized bulges (with dimensions 2° and 40°Λ) are generated by the continuous deformation of the auroral arc. The greater expansions develop mainly at the expense of the new bright arc formations at the front of the expanding auroral bulge. During each new arc formation impulsive acceleration and precipitation of energetic electrons takes place and brief changes of plasma sheet geometry are sometimes observed at 18 RE in the magnetotail. This apparently shows a re-distribution of plasma sheet current during the substorm expansive phase.  相似文献   
8.
Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries as identified by the particle measurements of the NOAA 10 satellite. In addition, for all events at least one close DMSP overpass was available. All but one of the 13 cases agree to an exceptional degree that: the TCV centres are located within the region of trapped, high energy electrons close to the trapping boundary for the population of electrons with energy greater than > 100 keV. Correspondingly, from the DMSP data they are located within the region of plasmasheet-type precipitation close to the CPS/BPS precipitation boundary. That is, the TCV centres map to deep inside the magnetosphere and not to the magnetopause.  相似文献   
9.
Auroral, magnetic variation and pulsation data from the dense network in the nearmidnight portion of the auroral zone are used together with the measurements of suprathermal particles and electromagnetic fields by the IMP-8 and ISEE-1 spacecraft within the plasma sheet to study the characteristics of activity during two magnetically quiet periods on 3 March 1976 and 23 March 1979. Contrary to existing beliefs, we found clear signatures of numerous (5–10 events per hour) transient events, characterized by plasma flows, energetic particle bursts and EB field variations. A close association of these events in the plasma sheet with the local auroral flares (LAFs) in the conjugate sector of the auroral zone is established for many events. We conclude that LAF (local auroral arc activation with associated Pi pulsations but extremely weak magnetic bays) have the same plasma sheet manifestations (apparently, the same physics) as the individual substorm intensifications during strong substorm expansion events, which differ from the studied quiet periods mainly by the strength and number of these intensifications. These transient phenomena seem to play an important role in the energetics of the quiet time magnetotail.  相似文献   
10.
On 11 November 1976, after a magnetically quiet period with the interplanetary magnetic field (IMF) directed northward, a sudden southward turning of the IMF immediately led to a world-wide intensification of convection which was observed to start almost simultaneously at stations within the auroral zone and polar cap. The two-dimensional equivalent current system over the northern hemisphere had a typical two-cell convection pattern with a maximum disturbance of ΔH = ?300 nT observed on the morningside in the westward electrojet region. This enhancement of activity ended after 35 min in a localized substorm onset in the midnight sector over Scandinavia.The recordings made in this area indicate large fluctuations of various ionospheric parameters starting several minutes before the substorm onset. Two subsequent stages can be resolved: (1) high-energy particle precipitation recorded by balloon X-ray detectors and maximum ionospheric current density increase, while the electrojet halfwidth shrinks and the total electrojet current becomes weaker; (2) the maximum ionospheric current density stays constant and the high-energy particle precipitation decreases, while the auroral brightness increases and the total electrojet current and its half-width show a growing trend prior to the final breakup. A suggestion is made that the time interval of these two stages should be called “trigger phase”. A short discussion explains the trigger phase observations in a magnetospheric scale. The energy coupling between solar wind and magnetosphere during the pre-substorm phases is discussed by utilizing the energy coupling function ? defined by Perreault and Akasofu (Geophys. J. R. Astr. Soc.54, 547, 1978). The ? values appear to be on substorm level during the period of enhanced convection. A good correlation between ? and the growth of the Joule heating rate (estimated from the AE data) is found in the beginning, but during the last 20 min before substorm triggering ? is high while the Joule heating rate decreases. The behaviour of ? during the two stages of the trigger phase suggests that the start of the trigger phase is purely internally controlled while the length of the trigger phase and the final substorm onset may be influenced by the variation in ?.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号