首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
大气科学   1篇
地球物理   6篇
地质学   46篇
海洋学   1篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
In distribution areas of the Pekul’neiveem and Chirynai formations customary distinguishable in the Koryak Upland, complicated tectonostratigraphic units are composed of alternating thrust sheets of different lithologic composition and age, which are juxtaposed because of widespread thrust faulting, as is proved by the radiolarian analysis. Nineteen radiolarian assemblages of different age are first established here in the Lower Jurassic-Hauterivian succession of siliceous-volcanogenic sediments. In the Lower Jurassic interval, the lower and upper Hettangian, lower and upper Sinemurian, and Pliensbachian beds are recognized. Paleontological characterization is also presented for the Aalenian (or Toarcian?-Aalenian), upper Bajocian, lower and upper Bathonian, and Callovian beds of the Middle Jurassic. Within the Upper Jurassic, the Oxfordian-early Kimmeridgian, late Kimmeridgian-early Tithonian, Tithonian, and late Tithonian-early Berriasian radiolarian assemblages are distinguished. The late Berriasian-early Valanginian, middle-late Valanginian, and Hauterivian radiolarian assemblages are first recognized or compositionally revised. Radiolarians and lithofacies data are used to correlate the tectonostratigraphic units and individualize the jasper-alkali basaltic (lower Hettangian), chert-terrigenous (Hettangian-Sinemurian), jasper-cherty (Pliensbachian-Aalenian), jasper (Bajocian-Hauterivian), jasper-basaltic (upper Bajocian-Valanginian), Fe-Ti basaltic (upper Bajocian-Bathonian), tuffitejasper-basaltic (Bathonian-Hauterivian), and terrigenous-volcanogenic (Bajocian-Valanginian) sequences. The correlation results are extrapolated into other continental areas flanking the Pacific, i.e., to the western Kamchatka, northern and northwestern coastal areas of the Sea of Okhotsk, where the analogous radiolarian assemblages are characteristic of comparable allochthonous units of terrigenous-siliceous-volcanogenic sediments.  相似文献   
2.
3.
The distribution of integrated resources of large and superlarge deposits (LSLDs) of rare earth elements (REEs) is compared to the current model of supercontinent cyclicity during Earth’s evolution. It is found that REE LSLDs are related predominantly to igneous complexes (carbonatite, nepheline syenites, syenite-alkaline granites, subalkaline granites), which are often additionally enriched in the hypergenic zone. A certain part of the resources is concentrated in independent hypergenic formations represented by placers and ion-adsorbed clays. Each supercontinent cycle—Kenoran, Columbian, Rodinian, Pangean, and Amasian—is expressed in the REE metallogeny in particular way: we revealed significant intercycle variations in the amount of REE LSLDs, the variety of their types, total accumulated resources, and some other characteristics.  相似文献   
4.
U-Pb dating of detrital zircons from the sandstones of the Mamakan Formation has been made. Geochemical and isotope parameters of the carbonate deposits of the Yanguda Formation in the Vendian-Cambrian cover of the North Muya continental block have been estimated. It has been established that only the Neoproterozoic (630-915 Ma) rocks of the North Muya block were the provenances of terrigenous material. In the least altered carbonate rocks of the Yanguda Formation, the 87Sr/86Sr ratio is within 0.70814-0.70879 and δ13C varies from -0.4 to + 1.9‰. Comparison of the evaluated isotope parameters with those of carbonate rocks of typical Vendian-Cambrian sections shows that the carbonate deposits of the Yanguda Formation accumulated in the Early Cambrian, about 520 Ma. Sedimentation of the Mamakan and Yanguda Formations took place in the local sedimentary basin in the Vendian-Early Cambrian, in the absence of tectonic activity within the North Muya block. Detrital material that formed during the destruction of the rocks of the Siberian Platform basement and cover was not supplied into the basin.  相似文献   
5.
6.
Abstract This paper contains extended abstracts of the seven papers presented at the symposium 'Radiolarians and Orogenic Belts' held at the seventh meeting of the International Association of Radiolarian Paleontologists (INTERRAD). Important results of the symposium include the following: (1) Upper Paleozoic and Mesozoic cherts are widely distributed within accretionary complexes in the circum-Pacific orogenic belt. Radiolarian dating reveals that long durations of chert sedimentation in a pelagic environment are recorded on both sides of Pacific-rim accretionary complexes (e.g. New Zealand, Japan, Russian Far East, Canadian Cordillera). (2) Triassic radiolarian faunas from New Zealand and the Omolon Massif, northeast Siberia are similar in composition and are characterized by the absence of typical Tethyan elements. This suggests that radiolarian faunal provincialism may have been established as early as the Triassic. High-latitude radiolarian taxa exhibit a bi-polar distribution pattern. (3) The Lower Triassic interval in chert dominant pelagic sequences is mechanically weaker than other levels and acted as a décollement in accretionary events. This lithologic. contrast in physical property is considered to reflect radiolarian evolution, such as the end-Permian mass extinction.  相似文献   
7.
Jurassic–Cretaceous siliceous–volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk–Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk–Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal–climate settings were juxtaposed into allochthonous units.  相似文献   
8.
Cretaceous radiolarians of the Boreal regions are considered. Their minimal diversity and low abundance are recorded in stratigraphic intervals corresponding to anoxic events. Paleogeographic and ecostratigraphic distribution trends of Cretaceous radiolarians are established for families Heliodiscidae, Prunobrachidae, Pseudoaulophacidae and some others. The most significant turnovers in evolution of radiolarians are confined to the latest Jurassic-earliest Cretaceous, Albian-Cenomanian, Cenomanian-Turonian, terminal Santonian-earliest Campanian transitions and to the terminal Late Cretaceous.  相似文献   
9.
The correlation of the Jurassic–Lower Cretaceous cherty-volcanic complexes constituting nappe scales of the tectonostratigraphic sections of the Okhotsk-Koryak orogenic belt served as a basis for interpreting the lateral and vertical series of Norian–Barremian marine sedimentary settings in the North Pacific. The correlation was based on radiolarian and geodynamic analyses. The taxonomic compositions of radiolarian assemblage were used as proxies for reconstructing oceanic and marginal marine settings and the seafloor topography (deep and shallow neritic regions, elevated areas (atolls, guyot, and island arcs), facilitating the upwelling). The stage-by-stage reconstruction of the paleoenvironments became possible owing to the stage subdivision of previously almost entirely barren allochthonous formations.  相似文献   
10.
The work discusses peculiarities of sedimentation during the onset and middle phase of the postrift subsidence in the southern part of the East European Platform corresponding to the Early and Middle Carboniferous epochs, which were marked by an accumulation of the most contrasting (in lithology and formation setting) sediments: coals and radiolaria-bearing domanikoid rocks. These are the early-middle Visean (Early Carboniferous) and late Bashkirian-early Moscovian (Middle Carboniferous) epochs. It should be noted that precisely these epochs were marked by a substantial renewal in faunal and floral communities, which also resulted from the new phase of the postrift subsidence. Radiolaria-bearing domanikoid facies were formed in the marine basin with normal salinity. The reconstruction of sedimentation settings indicates that shallow-water sediments (algal limestones) of the inner shelf were separated from deep-sea domanikoid facies of the outer shelf and, probably, continental slope by a chain of bioherms with an apron of organogenic-detrital limestones or spiculebearing facies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号