首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   4篇
地质学   3篇
天文学   2篇
自然地理   1篇
  2023年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2007年   2篇
  2006年   2篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 453 毫秒
1
1.
In this paper we present the results of a sunspot rotation study using Abastumani Astrophysical Observatory photoheliogram data for 324 sunspots. The rotation amplitudes vary in theinebreak 2–64° range (with maximum at 12–14°), and the periods around 0–20 days (with maximum atinebreak 4–6 days). It could be concluded that sunspot rotations are rather inhomogeneous and asymmetric, but several types of sunspots are distinguished by their rotational parameters.During solar activity maximum, sunspot average rotation periods and amplitudes slightly increase. This can be affected by the increase of sunspot magnetic flux tube depth. So we can suppose that sunspot formation during solar activity is connected to a rise of magnetic tubes from deeper layers of the solar photosphere, strengthening the processes within the tube and causing variations in rotation.There is a linear relation between tilt-angle oscillation periods and amplitudes, showing higher amplitudes for large periods. The variations of those periods and especially amplitudes have a periodical shape for all types of sunspots and correlate well with the solar activity maxima with a phase delay of about 1–2 years.  相似文献   
2.
The Greater Caucasus is Europe's largest mountain belt. Significant uncertainties remain over the evolution of the range, largely due to a lack of primary field data. This work demonstrates that depositional systems within the Oligocene–Early Miocene Maykop Series on either side of the Western Greater Caucasus (WGC) display a similar provenance and divergent palaeocurrents away from the range, constraining a minimum age for the subaerial uplift of the range as early Early Oligocene. An Eocene–Oligocene hiatus, basal Oligocene olistostromes and a marked increase in nannofossil reworking also point to initial deformation in the earliest Oligocene. The initial uplift of the WGC occurred during the final assembly of the Tethysides to its south. Uplift commenced after the Late Eocene final suturing of northern Neotethys and during the initial collision of Arabia with the southern accreted margin of Eurasia. This suggests that compressional deformation was rapidly transferred across the collision zone from the indenting Arabian plate to its northern margin.  相似文献   
3.
Investigation of dynamical features of ambient seismic noise is one of the important scientific and practical research challenges. We investigated scaling features of the ambient noises at the Oni seismic station, Georgia, using detrended fluctuation analysis method. Data from this seismic station, located in the epicentral zone of Oni M6.0, 2009, earthquake, were selected to include time periods with different levels of local seismic activity.  相似文献   
4.
Investigation of complex dynamics of ambient seismic noise remains as an important scientific research challenge. In this work we investigated dynamical features of the ambient noises at Oni seismic station, Georgia. We used stochastic model reconstruction method from measured data sets. Seismic records for different time periods around Oni seismic station have been analysed. It was shown that the dynamics of fluctuations of seismic noise vertical component undergoes essential changes for considered time period from 2005 to 2012. These changes are more noticeable for time periods of preparation and aftershock activity of strong M6.0 earthquake occurred in 2009 in the vicinity of Oni seismic station.  相似文献   
5.
Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity. Teleseismic wave trains of strong earthquakes give rise to several hydraulic effects in boreholes, namely permanent water level changes and water level oscillations, which closely mimic the seismograms (hydro-seismograms). Clear identical anomalies in the deep borehole water levels have been observed on a large part of the territory of Georgia during passing of the S and Love–Rayleigh teleseismic waves (including also multiple surface Rayleigh waves) of the 2011 Tohoku M9 earthquake. The analysis carried out in order to find dynamically triggered events (non-volcanic tremors) of the Tohoku earthquake by the accepted methodology has not revealed a clear tremor signature in the test area: the Caucasus and North Turkey. The possible mechanisms of some seismic signals of unknown origin observed during passage of teleseismic waves of Tohoku earthquake are discussed.  相似文献   
6.
7.
Observations by recent space missions reported the detection of Rossby waves (r-modes) in light curves of many stars (mostly A, B, and F spectral types) with outer radiative envelope. This article aims to study the theoretical dynamics of Rossby-type waves in such stars. Hydrodynamic equations in a rotating frame were split into horizontal and vertical parts connected by a separation constant (or an equivalent depth). Vertical equations were solved analytically for a linear temperature profile and the equivalent depth was derived through free surface boundary condition. It is found that the vertical modes are concentrated in the near-surface layer with a thickness of several tens of surface density scale height. Then with the equivalent width, horizontal structure equations were solved, and the corresponding dispersion relation for Rossby, Rossby-gravity, and inertia-gravity waves was obtained. The solutions were found to be confined around the equator, leading to the equatorially trapped waves. It was shown that the wave frequency depends on the vertical temperature gradient as well as on stellar rotation. Therefore, observations of wave frequency in light curves of stars with known parameters (radius, surface gravity, rotation period) could be used to estimate the temperature gradient in stellar outer layers. Consequently, the Rossby mode may be considered as an additional tool in asteroseismology apart from acoustic and gravity modes.  相似文献   
8.
Triggering and synchronization are encountered in many geophysical phenomena, including geodynamics. Both these effects are generated by the action of additional forcing, which is much smaller than the main driving force. That means that triggering and synchronization are connected with nonlinear interactions of objects, in this case with initiation of instability in systems that are close to the critical state. In seismic process the main component is the tectonic stress and the additional forcing is exerted by various external impacts like tides, reservoir exploitation, big explosions, magnetic storms, etc.In the paper, the results of laboratory and field experiments on the electromagnetic (EM) initiation and synchronization of mechanical instability (slip) are presented. Slip events were recorded as acoustic emission bursts. In the first series of experiments strong EM pulses were applied to the mechanical system driven close to the critical state, namely, to the (dry) rock samples placed on an inclined supporting sample at the slope angle less than, but close to the critical slip angle. It has been found that EM impact initiates slip with probability P ≈ 0.07 at the voltage ΔV = 1.3 kV and with probability P ≈ 0.2 at ΔV ≈ 10 kV if the EM field is applied parallel to the slip surface (first mode). On the other hand, the application of EM pulse hampers the slip considerably if the EM field is directed perpendicularly to the slip surface (second mode): the slip was not observed even at the angle that was larger than the critical one.In the second series of experiments the periodic EM and mechanical forcing were applied to the standard slider-spring system. It was discovered that periodic EM force of frequency f superimposed on the constant driving force excites periodic microslips of rock samples with double frequency 2f. Combined impact of periodic and constant voltages invokes transition from double frequency synchronization to 1:1 synchronization if the direct component of voltage is larger than the periodic one. Synchronization affects not only waiting times, but also frequency-energy distribution: i. the energy of bursts emitted in synchronized mode have much less scatter than in the absence of the periodic forcing, ii. the sudden decrease of synchronizing forcing is followed by acoustic burst of much larger energy than during forcing.The elementary theory of EM triggering and synchronization is given: the effects are explained by the action of EM ponderomotive (electrostriction) forces, which modify Coulomb stress similar to the well known pore pressure model. The formalism of transition from 1:2 to 1:1 synchronization is considered.  相似文献   
9.
10.
Recent methods of analysis of so called disordered systems show that many objects and processes that earlier were considered as completely random reveal clear evidence of having some ordered structure in both time and space. These new methods (fractals, percolation, nonlinear dynamics and complexity theories) allow visualization and quantitative assessment of the level of complexity (orderliness) of these structures, using both theoretical models and experimental data. We consider sequentially some aspects of structural and evolutionary complexity of dynamics of seismic process and the technique of measuring this property.It is shown that the physical properties of geophysical medium are not always self-consistent and manifest fractal behavior on selected spatial and temporal scales. Mechanical percolation theory can be used for modeling geometry of fracture process. Namely, we consider fractal and connectivity aspects of delayed failure, including energy emission during fracturing. Special attention is paid to relating the intensity of geophysical anomalies to the strain in the framework of the pressure-induced anomalous strain-sensitivity (percolation) model, which explains naturally the observed heterogeneity of response of a geophysical media to the strain variation.Different methods of measuring the dynamic complexity of seismological time series are applied to magnitude and waiting time sequences of Caucasian earthquakes. The fractal (correlation) dimension d2 of the latter is high (larger than 8), but the former one has as low dimension as 1.6–2.5, which makes waiting time sequences a promising tool for revealing precursory changes.The same nonlinear technique allow detecting significant changes in the seismic regime during external electromagnetic forcing by MHD pulses; similar tests on the laboratory scale show the possibility of triggering/controlling stick-slip process by relatively weak electromagnetic or mechanical forcing.Lastly, the predictive potential of complexity analysis of seismological time series is considered. For example, percolation model predicts the increase of the number of large events and the scatter of magnitudes of events, decrease of the magnitude-frequency relation slope and appearance of multifractality at approaching the final rupture.It seems that seismology can benefit from using the new techniques to cope with the complexity of earthquake machine; for example, the measures of complexity can be characteristic for a given region and change before strong earthquake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号