首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   4篇
地质学   1篇
海洋学   4篇
天文学   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2003年   1篇
  2000年   1篇
  1994年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有11条查询结果,搜索用时 250 毫秒
1.
The photo-inhibition of phytoplankton photosynthesis at higher intensities was examined with a cultured marine diatom,Phaeodactylum tricornutum, and natural samples. The question was to determine whether photo-inhibition results from excretion of photosynthetic products from cell or from an actual decrease in photosynthetic rate. P. tricornutum cultured at 15 klux showed very little photo-inhibition up to 70 klux, and, in the sample cultured at 1 klux, most marked photo-inhibition was observed in 3 hours experiment. Extracellular release was less than 30% of particulate fixation, and did not show any extreme increase to supplement photosynthesis depression at higher light intensities. When the photosynthesis was measured during 10 minutes, both samples showed no photo-inhibition. The photosynthesis by low light sample lost the linearity of time-course with prolonged exposure at high light intensity. Observed photo-inhibition, therefore, we explained with the actual decrease in photosynthetic rate. Similar photo-inhibition could be seen in marine phytoplankton samples concentrated by filtration.  相似文献   
2.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   
3.
Extracellular release of photosynthetic products by a pelagic blue-green alga,Trichodesmium thiebautii, was scrutinized in relation to pre-treatments in14C-method for measuring the primary productivity.The extracellular release increased markedly by the pre-treatments with such strong fixative solutions as formaldehyde and mercuric chloride. In such a case, the amount of extracellular fraction reached even almost 78 % of the total photosynthates. The extracellular release of photosynthates was dependent both on light intensity and on physiological state of algal cells. When photosynthesis was terminated by a fixative, the extracellular release was noticed even just after the fixation, and it increased with time. Thus, it appears to be difficult to deduce the real photosynthetic production capacity from the amount of cellular fraction only.The amount of extracellular fraction for unfixed samples filtered immediately after the incubation was less than 8 % of the total photosynthetic products inT. thiebautii. This value is nearly comparable to the amount of excretion reported in many cultured algae.  相似文献   
4.
5.
Occurrence of the depth differences in pigment composition and photosynthetic properties of marine phytoplankton were examined in relation to the spectral changes of light with depth. Phytoplankton were taken from various depths in the northwestern North Pacific, and their absorption spectra were determined with intact cells and in 90% acetone extract. The photosynthetic activities of phytoplankton were concurrently measured under blue, green, red and white light. The difference in absorption spectra for the surface and deeper samples was considerably small, indicating that the prevailing green or blue light in the deeper layers may have little significance for depth-variations of the pigment composition in marine phytoplankton. The depth differentiation in the shape of the light-photosynthesis curve was marked in a well stratified water column but no active response of deeper phytoplankton to green light could be confirmed. The photosynthetic efficiencies of phytoplankton for blue and green light were approximately 105–115 % and 80–90 % of white light, respectively, irrespective of sampling depth.Contribution No. 261 from Shimoda Marine Biological Station  相似文献   
6.
7.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   
8.
The radiation spectra of supersoft X-ray sources based on a model for hydrogen burning on the white dwarf surface are investigated by solving hydrostatic equilibrium, radiative equilibrium, statistical equilibrium and radiative transfer self-consistently for various sets of mass, radius and luminosity. It is found that the radiation spectrum shows many bound–free emission/absorption features and greatly deviates from the blackbody spectrum at the effective temperature. By the effect of incoherent Compton scattering, the bound–free emission/absorption features do not appear in strong emission/absorption edges, as predicted by coherent models without Compton scattering, but appear as weak humps and relatively shallow absorption edges. The difference between the incoherent model and the coherent model is prominent for L 0.5 L Edd. A calculated spectrum is fitted to the ASCA observations of RX J0925.7−4758. It is found that the entire spectrum of RX J0925.7−4758 cannot be reproduced by model atmospheres with any parameter sets. This suggests that the observed spectrum consists of two or more components. In this case, the atmospheric component is explained by the emission from a white dwarf near the Chandrasekhar limit (∼1.4 M) with L ∼0.2 L Edd at a distance of 16–20 kpc.  相似文献   
9.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   
10.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号