首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
海洋学   2篇
自然地理   1篇
  2020年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
S.R. Masterton  C. Swan   《Ocean Engineering》2008,35(8-9):763-773
This paper describes the calibration procedure adopted for the new 3D wave basin located in the Hydrodynamics Laboratory at Imperial College London. Unlike traditional calibrations, based on observations of regular wave trains, the method described herein uses a focused wave approach. Such waves, produced by the constructive interference of freely propagating wave components, have led to a number of recent advances in theoretical wave modelling in which it was essential to know the underlying linear components. In the context of a laboratory study, similar advantages can be realised provided the linear wave components generated by the wave paddles are well defined. This, in turn, can only be achieved if the calibration is sufficiently accurate. The current study provides a calibration based upon a realistic JONSWAP spectrum, describes the details of the methodology employed, and highlights how the application of focused wave techniques eliminates spurious calibration effects due to unwanted reflections from the boundaries of the basin. The final calibration is verified through the generation of test cases, involving linear and nonlinear, unidirectional and directionally spread waves. These confirm both the accuracy of the calibration and the suitability of the methods employed.  相似文献   
2.
Full Tensor Gravity Gradiometry (FTG) data are routinely used in exploration programmes to evaluate and explore geological complexities hosting hydrocarbon and mineral resources. FTG data are typically used to map a host structure and locate target responses of interest using a myriad of imaging techniques. Identified anomalies of interest are then examined using 2D and 3D forward and inverse modelling methods for depth estimation. However, such methods tend to be time consuming and reliant on an independent constraint for clarification. This paper presents a semi‐automatic method to interpret FTG data using an adaptive tilt angle approach. The present method uses only the three vertical tensor components of the FTG data (Tzx, Tzy and Tzz) with a scale value that is related to the nature of the source (point anomaly or linear anomaly). With this adaptation, it is possible to estimate the location and depth of simple buried gravity sources such as point masses, line masses and vertical and horizontal thin sheets, provided that these sources exist in isolation and that the FTG data have been sufficiently filtered to minimize the influence of noise. Computation times are fast, producing plausible results of single solution depth estimates t hat relate directly to anomalies. For thick sheets, the method can resolve the thickness of these layers assuming the depth to the top is known from drilling or other independent geophysical data. We demonstrate the practical utility of the method using examples of FTG data acquired over the Vinton Salt Dome, Louisiana, USA and basalt flows in the Faeroe‐Shetland Basin, UK. A major benefit of the method is the ability to quickly construct depth maps. Such results are used to produce best estimate initial depth to source maps that can act as initial models for any detailed quantitative modelling exercises using 2D/3D forward/inverse modelling techniques.  相似文献   
3.
Abstract

Landscape stewardship is considered an important place-based approach to addressing sustainability challenges. Working at landscape-level requires collaboration between diverse landscape stakeholders. In this study, we partnered with local stewardship practitioners across six cases in South Africa to investigate how they facilitate collaboration towards social-ecological sustainability outcomes. We found that practitioners facilitate collaboration among stakeholders by operating as relational hubs in the landscape. Through these hubs, they build new inter-personal relationships among stakeholders, creating social networks which enable stewardship practice. The hubs deepen human-nature relationships by creating enabling conditions for stewards to put stewardship ethics into action. Drawing on insights from these cases, we call for a relational approach to landscape stewardship which focuses on human-to-human and human-to-nature relationships. Moreover, we argue that landscape stewardship initiatives need to re-focus stewardship on stewards, recognizing them as key agents of change in addressing the conflict between agriculture and conservation inherent in many landscapes.  相似文献   
4.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号