首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
天文学   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 109 毫秒
1
1.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   
2.
Borehole temperatures in the central and south Urals were analysed for the past ground surface temperature (GST) signal. 31 highquality temperature logs were selected for this purpose and inverted with algorithms based on the generalised least squares theory. The signal to noise ratio was improved by averaging the results of individual borehole inversions. No distinct regional trends were found in the studied region except for some indications of more pronounced warming in the south. The mean GST history (GSTH) was characterised by cooling down to –0.6 °C in the 18th century and subsequent warming to 0.5 °C above the longterm mean at the beginning of this century, and to 1 – 1.5 °C by 1980. The stability of the mean GSTH was tested in dependence on the number of holes used for the averaging. It showed that any subset of 15 holes yielded a GSTH similar to that obtained from the whole set. A surface air temperature (SAT) time series comprising the period 1832 – 1989 was combined from 17 meteorological records. Its least squares warming rate of 1.1 °C per 100 years is somewhat higher than that of the GST (0.7 – 0.8°C/100 years) in the same period.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号