首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   4篇
地质学   1篇
天文学   6篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2012年   2篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Measurements and the interpretation of the time delay effect between long quasi-periodic oscillations of sunspot magnetic fields and nearby millimeter radio sources observed at 37 GHz were the main goals of this work. Ground-based radio telescope operated by Metsähovi Radio Observatory, Aalto University, Finland was used to obtain time series variations of radio intensity at 37 GHz frequency, as well as, the Helioseismic and Magnetic Imager instrument on-board the Solar Dynamics Observatory spacecraft was used to obtain the magnetic field time series variations. Lags (time delays) in the interval of 15–35 minutes were obtained by cross-correlation analysis of time series and by direct geometrical measurements of distances between the radio sources and nearby sunspots. These distances were in the interval of 11–24 Mm. Corresponding time delays were defined as the relation of these distances to the sound speed. Time delays obtained by two different independent methods turned to be very close. This fact confirms the interpretation of the phenomenon under the study as a process of propagation of disturbances from the slowly oscillating sunspot to the radio source with the sound speed.  相似文献   
2.
A specific type of artifacts (named as “p2p”), that originate due to displacement of the image of a moving object along the digital (pixel) matrix of receiver are analyzed in detail. The criteria of appearance and the influence of these artifacts on the study of long-term oscillations of sunspots are deduced. The obtained criteria suggest us methods for reduction or even elimination of these artifacts. It is shown that the use of integral parameters can be very effective against the “p2p” artifact distortions. The simultaneous observations of sunspot magnetic field and ultraviolet intensity of the umbra have given the same periods for the long-term oscillations. In this way the real physical nature of the oscillatory process, which is independent of the artifacts have been confirmed again. A number of examples considered here confirm the dependence between the periods of main mode of the sunspot magnetic field long-term oscillations and its strength. The dependence was derived earlier from both the observations and the theoretical model of the shallow sunspot. The anti-phase behavior of time variations of sunspot umbra area and magnetic field of the sunspot demonstrates that the umbra of sunspot moves in long-term oscillations as a whole: all its points oscillate with the same phase.  相似文献   
3.
For the first time, the ultra-low oscillation mode of the sunspot magnetic field strength has been detected with a high degree of confidence by ground-based observations of sunspots with the Global Oscillation Network Group (GONG) network of telescopes. Synchronous series of magnetograms derived from the GONG and Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) have been processed. They were obtained on September 27–30, 2010, for the active region NOAA 11109 with a total duration of 80 h. The periods of magnetic field oscillations found by space data coincide with the periods defined with GONG. This confirms the physical reality of the oscillatory process. The power spectrum contains harmonics with periods of 26 h, 8–10 h, and 3–4 h.  相似文献   
4.
In this study we discuss variations of the radio emission from the Quiet Sun Areas (QSA) at centimeter wavelength (1.76 cm). Data were obtained from Nobeyama Radioheliograph (NoRH). Oscillations of selected areas were studied carefully from data taken over one week. We try to find quasi‐periodic solar oscillations from the QSA. We used the traditional Fast Fourier Transform (FFT), Global Wavelet Spectrum (GWS) and Wavelet (Morlet) for studying signals in the frequency/time‐frequency domain. We used the Fisher randomization test to verify the significance of the observed signal. Instrumental and sky noises were studied using a cross‐correlation analysis. Additionally, a single pixel analysis were done. Wide ranges of solar oscillation periods were found from the Quiet Sun Area (QSA): 3–15, 35–70, and 90 minutes. Some physical explanations are suggested for these oscillations. However, it is not possible to give a conclusive statement about the origin of the long quasi‐periodic (>60 min) oscillations from the QSA (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
6.
In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95?% significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95?% significance level: 3??C?5, 10??C?23, 220??C?240, 340 and 470 minutes, and we also find common oscillation periods (10??C?23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.  相似文献   
7.

Recent dedicated Hinode polar region campaigns revealed the presence of concentrated kilogauss patches of the magnetic field in the polar regions of the Sun, which are also shown to be correlated with facular bright points at the photospheric level. In this work, we demonstrate that this spatial intermittency of the magnetic field persists even up to the chromospheric heights. The small-scale bright elements visible in the bright network lanes of the solar network structure as seen in the Ca ii H images are termed network bright points. We use special Hinode campaigns devoted to the observation of polar regions of the Sun to study the polar network bright points during the phase of the last extended solar minimum. We use Ca ii H images of chromosphere observed by the Solar Optical Telescope. For magnetic field information, level-2 data of the spectro-polarimeter is used. We observe a considerable association between the polar network bright points and magnetic field concentrations. The intensity of such bright points is found to be correlated well with the photospheric magnetic field strength underneath with a linear relation existing between them.

  相似文献   
8.
Modulations of the microwave emission of the Sun at 11.7 GHz have been studied using more than 40 events observed in 2001 at the Mets?hovi Radio Observatory. In nearly all the observed events, low-frequency modulations with periods of 3–90 min were detected. As a rule, simultaneous modulation of the emission at several frequencies was observed. One possible origin of such modulations with periods 5–10 min is parametric resonance arising in coronal magnetic loops as a result of interactions with the 5-min photospheric oscillations, while the long-period modulations could be a manifestation of sunspot oscillations. Torsional (ϑ-mode) and radial (r-mode) oscillations have such periods. The frequency of occurrence of oscillations with the determined periods is considered, and a lower limit for the brightness temperature of the oscillations is estimated.  相似文献   
9.
10.
Thirty small-scale structures in the solar atmosphere, i.e., facula nodes at ±(20°–46°) latitudes, have been studied in order to analyze quasi-periodic variations in the magnetic field. SDO/HMI magnetograms have been used for this purpose. Long-period variations in the magnetic field strength of the considered objects in the 60–280 min range have been revealed as a result of data processing. It has been shown that there are no dependences between the magnetic field and period, nor between the magnetic field and object area. It has been assumed that the discovered variations are not natural oscillations of the magnetic field strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号