首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   4篇
地质学   1篇
自然地理   13篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
The Hikurangi Margin is a region of oblique subduction with northwest-dipping intermediate depth seismicity extending southwest from the Kermadec system to about 42°S. The current episode of subduction is at least 16–20 Ma old. The plate convergence rate varies along the margin from about 60 mm/a at the south end of the Kermadec Trench to about 45 mm/a at 42°S. The age of the Pacific lithosphere adjacent to the Hikurangi Trench is not known.The margin divides at about latitude 39°S into two quite dissimilar parts. The northern part has experienced andesitic volcanism for about 18 Ma, and back-arc extension in the last 4 Ma that has produced a back-arc basin onshore with high heaflow, thin crust and low upper-mantle seismic velocities. The extension appears to have arisen from a seawards migration of the Hikurangi Trench north of 39°S. Here the plate interface is thought to be currently uncoupled, as geodetic data indicate extension of the fore-arc basin, and historic earthquakes have not exceededM s=7.South of 39°S there is no volcanism and a back-arc basin has been produced by downward flexure of the lithosphere due to strong coupling with the subducting plate. Heatflow in the basin is normal. Evidence for strong coupling comes from historic earthquakes of up to aboutM s=8 and high rates of uplift on the southeast coast of the North Island.The reason for this division of the margin is not known but may be related to an inferred increase, from northeast to southwest, in the buoyancy of the Pacific lithosphere.  相似文献   
3.
4.
We undertake detailed near-field numerical modelling of the tsunami generated by the 15 July 2009 earthquake (Mw 7.8) in Fiordland, New Zealand. High resolution bathymetry and topography data at Breaksea and Dusky Sounds, and Chalky and Preservation Inlets are derived mostly from digitised New Zealand nautical charts, Shuttle Radar Topographic Mission (SRTM) 3 arc-second data, and General Bathymetric Chart of the Ocean (GEBCO) 30 s data. A combination of continuous and campaign Global Positioning System (GPS), satellite radar (ALOS/PALSAR InSAR images) and seismology data are used to constrain the seafloor deformation for the initial tsunami condition. This source model, derived independently of DART observations, provides an excellent fit to observed tsunami elevations recorded by DART buoy 55015. The model results in the near field show maximum tsunami elevations in the range 0.5–2.0 m inside the sounds and inlets with maximum flow speeds of 3.0 m/s. Along the open coast, maximum tsunami elevations reach 2.0 m. The high flow speeds through the inlets may change the inlet stratifications and water mass inside the sounds. Media reports and field reconnaissance data show some tsunami evidence at Cormorant Cove, Duck and Goose Coves, and Passage Point.  相似文献   
5.
6.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   
7.
8.
Earthquake arrival time data from a 36-station deployment of portable seismographs on the Raukumara Peninsula have been used to determine the 3-D Vp and Vp/Vs structure of this region of shallow subduction. A series of inversions have been performed, starting with an inversion for 1-D structure, then 2-D, and finally 3-D. This procedure ensures a smooth regional model in places of low resolution. The subducted plate is imaged as a northwest-dipping feature, with Vp consistently greater than 8.5  km  s−1 in the uppermost mantle of the plate. Structure in the overlying plate changes significantly along strike. In the northeast, there is an extensive low-velocity zone in the lower crust underlying the most rapidly rising part of the Raukumara Range. It is bounded on its arcward side by an upwarp of high velocity. A viable explanation for the low-velocity zone is that it represents an accumulation of underplated subducted sediment, while serpentinization of the uppermost mantle may be responsible for the adjacent high-velocity region. The low-velocity zone decreases and the adjacent high-velocity region is less extensive in the southwest. This change is interpreted to be related to a change in the thickness of the crust of the overlying plate. In the northeast the crust is thinner, and subducted sediment ponds against relatively strong uppermost mantle, while in the southwest the crust is thicker, and the relatively weak lower crust allows sediment subduction to greater depths. A narrow zone of high Vp/Vs parallels the shallow part of the plate interface. This suggests elevated fluid pressures, with the distribution of earthquakes about this zone further suggesting that these pressures may be close to lithostatic. The plate interface at 20  km depth beneath the Raukumara Peninsula may thus be a closed system for fluid flow, similar to that seen at much shallower depths in other subduction décollements.  相似文献   
9.
We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150?years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth’s subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake (M w ?8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude–frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号