首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
地球物理   16篇
海洋学   8篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1988年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Hydrological connectivity describes the physical coupling (linkages) of different elements within a landscape regarding (sub‐) surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for example, habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has also been recognized within the scientific community, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterize and quantify overland flow connectivity dynamics on hillslopes in a humid sub‐Mediterranean environment by using a combination of high‐resolution digital‐terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow connectivity on agricultural areas and semi‐natural shrubs areas. Significant positive correlations between connectivity and precipitation characteristics were found. Significant negative correlations between connectivity and soil moisture were found, most likely because of soil water repellency and/or soil surface crusting. The combination of structural networks and dynamic networks for determining potential connectivity and actual connectivity proved a powerful tool for analysing overland flow connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
Previous studies devoted to the morphology and hydrodynamics of ridge and runnel beaches highlight characteristics that deviate from those initially postulated by King and Williams (Geographical Journal, 1949, vol. 113, 70–85) and King (Beaches and Coasts, 1972, Edward Arnold). Disagreements on the morphodynamics of these macrotidal beaches include the position of the ridges relative to the mean neap and spring tide levels, the variation in the height of the ridges across the intertidal profile and, most importantly, whether the ridges are formed by swash or surf zone processes. The morphological characteristics of ridge and runnel beaches from three locations with varying wave, tidal and geomorphic settings were investigated to address these disagreements. Beach profiles from each site were analysed together with water‐level data collected from neighbouring ports. It was found that the ridges occur over the entire intertidal zone. On one site (north Lincolnshire, east England), the ridges are uniformly distributed over the intertidal beach, whereas on the two other sites (Blackpool beach, northwest England, and Leffrinckoucke beach, north France) there is some indication that the ridges appear to occur at preferential locations. Most significantly, the locations of the ridge crests were found to be unrelated to the positions on the intertidal profile where the water level is stationary for the longest time. It was further found that the highest ridges generally occur just above mid‐tide level where tidal non‐stationarity is greatest. These findings argue against the hypothesis that the ridges are formed by swash processes acting at stationary tide levels. It is tentatively suggested that the ridges are the result of a combination of swash and surf zone processes acting across the intertidal zone. Elucidation of the morphodynamic roles of these two types of processes, and other processes such as strong current flows in the runnels, requires further comprehensive field measurements complemented by numerical modelling. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
3.
The sensitivity of the suspended sediment flux is tested with respect to rapid changes in bed-level across the surf zone of a sandy beach. The suspended flux was computed using a fixed instrument array, but bed-level changes due to ripple migration caused the instrument elevations to be significantly changed during the course of the experiment. The nominal elevations of the instruments were adjusted during data processing (using the MOBS array) to maintain a fixed elevation with respect to bed-level changes. The resultant suspended sediment concentrations and fluxes were significantly different from the unadjusted data, and for the present data set O(35%) less when averaged over the tide. The maximum difference between adjusted and unadjusted fluxes may be O(260%). The results indicate that changes in bed-level, particularly those due to bedform migration, must be accounted for when processing OBS data if reliable estimates of suspended sediment transport are to be obtained in the field.  相似文献   
4.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
5.
Multiple intertidal bars are common features of wave‐dominated sandy beaches, yet their short‐term (<1 month) and small‐scale (<1 km) morphology and dynamics remain poorly understood. This study describes the morphodynamics of multiple intertidal bars in North Lincolnshire, England, during single and lunar tidal cycles under two contrasting conditions – first when significant wave height was <0·5 m and second when significant wave height frequently exceeded 1 m. The relative importance of swash, surf and shoaling processes in determining morphological change was examined using detailed field observations and a numerical model. The beach featured four intertidal bars and both cross‐shore and longshore bar morphology evolved during the field investigation, particularly under medium to high wave‐energy conditions. Numerical modelling suggests shoaling processes are most common on the seaward two bars under calm wave conditions (Hs < 0·5 m) and that surf zone processes become more common during neap tides and under more energetic (Hs < 0·5 m) conditions. Surf processes dominate the inner two bars, though swash influence increases in a landward direction. The numerical modelling results combined with low tide survey data and high‐resolution morphological measurements strongly suggest changes in the intertidal bar morphology are accomplished by surf zone processes rather than by shoaling wave or swash processes. This is because shoaling waves do not induce significant sediment transport to have any morphological effect, whereas swash action generally does not have enough scope to act as the swash zone is much narrower than the surf zone. It was found, however, that the absolute rate of morphological change under swash action and surfzone processes are of similar magnitudes and that swash action may induce a significant amount of local morphological change when the high tide mark is located on the upper bar, making this process important for bar morphodynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Linking landscape morphological complexity and sediment connectivity   总被引:2,自引:0,他引:2  
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Field measurements of wave ripples and megaripples were made with a Sand Ripple Profiler in the surf and shoaling zones of a sandy macrotidal dissipative beach at Perranporth, UK in depths 1–6 m and significant wave heights up to 2.2 m. A frequency domain partitioning approach allowed quantification of height (η), length (λ) and migration rate of ripples and megaripples. Wave ripples with heights up to 2 cm and wavelengths ~20 cm developed in low orbital velocity conditions (u m?<?0.65 m/s) with mobility number ψ?<?25. Wave ripple heights decreased with increasing orbital velocity and were flattened when mean currents were >0.1 m/s. Wave ripples were superimposed on top of megaripples (η?=?10 cm, λ?=?1 m) and contributed up to 35 % of the total bed roughness. Large megaripples with heights up to 30 cm and lengths 1–1.8 m developed when the orbital velocity was 0.5–0.8 m/s, corresponding to mobility numbers 25–50. Megaripple heights and wavelengths increased with orbital velocity but reduced when mean current strengths were >0.15 m/s. Wave ripple and megaripple migrations were generally onshore directed in the shoaling and surf zones. Onshore ripple migration rates increased with onshore-directed (+ve) incident wave skewness. The onshore migration rate reduced as offshore-directed mean flows (undertow) increased in strength and reached zero when the offshore-directed mean flow was >0.15 m/s. The migration pattern was therefore linked to cross-shore position relative to the surf zone, controlled by competition between onshore-directed velocity skewness and offshore-directed mean flow.  相似文献   
9.
Gravel beaches are common throughout the high latitudes, but few studies have examined gravel transport rates, in particular at high energy levels, and no studies have quantified gravel transport around headlands. Here, we present the first complete sediment budget, including supra-, inter- and sub-tidal regions of the beach, across multiple headland-separated gravel embayments, combined with hydrodynamic observations, over an extreme storm sequence, representing at least a 1-in-50-year event. Unprecedented erosion was observed (~400 m3 m−1, −6 m vertical), with alongshore flux of 2 × 105 m3, equivalent to annual rates. Total system volume change was determined to the depth of closure and then used to calculate alongshore flux rates. Alongshore wave power was obtained from a wave transformation model. For an open section of coastline, we derive a transport coefficient (CERC formula) of KHs = 0.255 ± 0.05, exceeding estimates in lower-energy conditions by a factor of 5 or more. We apply this coefficient to rocky segments of the shoreline, determining rates of headland bypass from 0 to 31% of potential flux, controlled by headland extent and toe depth. Our results support the hypothesis that gravel is transported more efficiently at higher energy levels and that a variable rate or threshold approach may be required. Complete coverage and varying morphology make this dataset uniquely suited to improving model predictions of gravel shoreline change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
10.
This paper replies to TE Baldock's discussion [Coastal Eng. 56 (2009) 380–381] of ‘Measurement of wave-by-wave bed-levels in the swash zone’ by Turner et al. [Coastal Eng. 55 (2008) 1237–1242]. We address and extend the comparison and discussion of ultrasonic bed-level sensors and buried pressure transducers to obtain estimates of the beach face elevation within the swash zone. We demonstrate the use of the former method to obtain many and continuous (every time the beach face is exposed) in-situ estimates of net sediment flux per swash.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号