首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
天文学   4篇
  2014年   1篇
  2009年   1篇
  2003年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有5条查询结果,搜索用时 444 毫秒
1
1.
A general analysis of the absorption of the Schumann-Runge bands of molecular oxygen has been made in order to compare the various experimental and theoretical results which have been obtained for an application to the O2 atmospheric absorption and its photodissociation in the mesosphere and stratosphere. The different values of the oscillator strengths deduced from the laboratory absorption spectra and of the predissociation linewidths used for the calculation of the absorption have been compared.Calculations based on a Voight profile of the O2 rotational lines have led to simple formulas for atmospheric applications taking into account that the total photodissociation rate in the stratosphere depends strongly on the absorption of solar radiation in the spectral range of the O2 Herzberg continuum. Specific examples are given.  相似文献   
2.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   
3.
On 7 February 2008, the SOLAR payload was placed onboard the International Space Station. It is composed of three instruments, two spectrometers and a radiometer. The two spectrometers allow us to cover the 16?–?2900 nm spectral range. In this article, we first briefly present the instrumentation, its calibration and its performance in orbit. Second, the solar spectrum measured during the transition between Solar Cycles 23 to 24 at the time of the minimum is shown and compared with other data sets. Its accuracy is estimated as a function of wavelength and the solar atmosphere brightness-temperature is calculated and compared with those derived from two theoretical models.  相似文献   
4.
Thuillier  G.  Hersé  M.  Labs  D.  Foujols  T.  Peetermans  W.  Gillotay  D.  Simon  P.C.  Mandel  H. 《Solar physics》2003,214(1):1-22
The SOLar SPECtrum (SOLSPEC) and the SOlar SPectrum (SOSP) spectrometers are two twin instruments built to carry out solar spectral irradiance measurements. They are made of three spectrometers dedicated to observations in the ultraviolet, visible and infrared domains. SOLSPEC flew with the ATmospheric Laboratory for Applications and Science (ATLAS) while SOSP flew on the EUropean Retrieval CArrier (EURECA) missions. ATLAS 1 and 2 data being already published, this paper is mostly dedicated to the ATLAS 3 and EURECA data in the IR domain. Comparisons between the ATLAS data sets and the Upper Atmosphere Research Satellite (UARS) results are made. EURECA IR data are shown and compared with previous results. Our best UV, visible and IR spectra are finally merged into a single absolute solar irradiance spectrum covering the 200 to 2400 nm domain.  相似文献   
5.
SOLAR is a set of three solar instruments measuring the total and spectral absolute irradiance from 16 nm to 3080 nm for solar, atmospheric and climatology physics. It is an external payload for the COLUMBUS laboratory launched on 7 February 2008. The mission’s primary objective is the measurement of the solar irradiance with the highest possible accuracy, and its variability using the following instruments: SOL-ACES (SOLar Auto-Calibrating EUV/UV Spectrophotometers) consists of four grazing incidence planar gratings measuring from 16 nm to 220 nm; SOLSPEC (SOLar SPECtrum) consists of three double gratings spectrometers, covering the range 165 nm to 3080 nm; and SOVIM (SOlar Variability Irradiance Monitor) is combining two types of absolute radiometers and three-channel filter – radiometers. SOLSPEC and SOL-ACES have been calibrated by primary standard radiation sources of the Physikalisch-Technische Bundesanstalt (PTB). Below we describe SOLSPEC, and its performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号