首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  国内免费   3篇
地球物理   6篇
地质学   27篇
海洋学   5篇
天文学   1篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
  1989年   2篇
  1977年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   
2.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   
3.
Molecular orbital calculations completed on fluoride molecules containing first and second row cations have generated bond lengths, R, that match those observed for coordinated polyhedra in crystals to within ~0.04 Å, on average. The calculated bond lengths and those observed for fluoride crystals can be ranked with the expression R=Kp ?0.22, where p=s/r, s is the Pauling strength of the bond, r is the row number of the cation and K=1.34. The exponent -0.22 (≈ -2/9) is the same as that observed for oxide, nitride and sulfide molecules and crystals. Bonded radii for the fluoride anion, obtained from theoretical electron density maps, increase linearly with bond length. Those calculated for the cations as well as for the fluoride anion match calculated promolecule radii to within ~0.03 Å, on average, suggesting that the electron density distributions in the vicinity of the minima along the bond paths possess a significant atomic component despite bond type. Bonded radii for Si and O ions provided by experimental electron density maps measured for the oxides coesite, danburite and stishovite match those calculated for a series of monosilicic acid molecules. The resulting radii increase with bond length and coordination number with the radius of the oxide ion increasing at a faster rate than that of the Si cation. The oxide ion within danburite exhibits several distinct radii, ranging between 0.9 and 1.2 Å, rather than a single radius with each exhibiting a different radius along each of the nonequivalent bonds with B, Si and Ca. Promolecule radii calculated for the coordinated polyhedra in danburite match procrystal radii obtained in a structure analysis to within 0.002 Å. The close agreement between these two sets of radii and experimentally determined bonded radii lends credence to Slater's statement that the difference between the electron density distribution observed for a crystal and that calculated for a procrystal (IAM) model of the crystal “would be small and subtle, and very hard to determine by examination of the total charge density.”  相似文献   
4.
新疆北部富蕴县内希勒库都克铜钼矿区的花岗闪长岩及其包体岩相学、矿物化学和岩石地球化学特征及野外地质特征显示其为岩浆混合作用的结果。本文获得花岗闪长岩及其中暗色微粒包体玄武安山玢岩、细粒辉长闪长岩锆石U-Pb年龄为326.8±2.1Ma、327.6±2.4Ma、329.3±2.3Ma,年龄值基本一致,这一结果从年代学角度为花岗闪长岩及其中暗色微粒包体的岩浆混合作用成因提供证据。偏酸性的花岗闪长质与偏基性玄武安山质岩浆混合作用形成了331.9±2.1Ma的安山玢岩脉。  相似文献   
5.
<正>The Southwest Indian Ridge is an ultraslow spreading ridge(~14-mm/yr)that formed~150 Ma with the breakup of Gondwana.It extends 7700 km from the Bouvet to the Rodriguez Triple Junction,crossing over the flank of the large southern Geoid high centered over Marion and Crozet islands and the Conrad Rise.There is a  相似文献   
6.
7.
The Early Triassic Induan–Olenekian Stage boundary (Dienerian–Smithian sub-stage boundary) has been identified at a depth of 2719.25 m in the petroleum exploration well Senecio-1 located in the northern Perth Basin, Western Australia. Conodont faunas represent three conodont zones in ascending order, the Neospathodus dieneri Zone, the Neospathodus waageni eowaageni Zone and the Neospathodus waageni waageni Zone. The Induan–Olenekian (Dienerian–Smithian) boundary is placed at the base of the Neospathodus waageni eowaageni Zone equivalent to the first appearance of Neospathodus ex. gr. waageni utilised elsewhere and adopted by the IUGS ICS Triassic Subcommission to define the base of the Olenekian. Bulk kerogen δ13C carbon isotopes define a positive peak of c. 4 per mille that essentially coincides with the Induan–Olenekian boundary as seen in proposed Global Stratotype Sections and Points (GSSPs) in South China and Spiti, India demonstrating the global utility of this level for correlation. An anoxic zone is recognised in the lower part of the Senecio-1 core and the upper limit of this zone is dated as late Induan (late Dienerian). Temporal and spatial mapping of marine anoxia and dysoxia globally demonstrates that pulses of dysoxia/anoxia affected shallow-marine zones at different times in different locations. Dysoxia/anoxia in the shallow-marine environment appeared in the latest Permian at the extinction level, later than in the deep-marine environment, and appears to be largely restricted to the Induan (Griesbachian and Dienerian) and early Olenekian (Smithian). Temporally and geographically restricted upwelling of an oxygen minimum zone into the ocean surface layer due to environmental perturbations including extreme global warming, increased terrestrial chemical weathering intensity and continental erosion, sea level rise, and changes in marine nutrient inventories and productivity rates, is interpreted as a likely cause of observed variation in shallow-marine dysoxia/anoxia in the Early Triassic.  相似文献   
8.
The advent of chemical abrasion-isotope dilution thermal ionisation mass spectrometry (CA-IDTIMS) has revolutionised U–Pb dating of zircon, and the enhanced precision of eruption ages determined on volcanic layers within basin successions permits an improved calibration of biostratigraphic schemes to the numerical time-scale. The Guadalupian and Lopingian (Permian) successions in the Sydney, Gunnedah, Bowen and Canning basins are mostly non-marine and include numerous airfall tuff units, many of which contain zircon. The eastern Australian palynostratigraphic scheme provides the basis for much of the local correlation, but the present calibration of this scheme against the numerical time-scale depends on a correlation to Western Australia, using rare ammonoids and conodonts in that succession to link to the standard global marine biostratigraphic scheme. High-precision U–Pb zircon dating of tuff layers via CA-IDTIMS allows this tenuous correlation to be circumvented—the resulting direct calibration of the palynostratigraphy to the numerical time-scale highlights significant inaccuracies in the previous indirect correlation. The new data show: the top of the Praecolpatites sinuosus Zone (APP3.2) lies in the early Roadian, not the middle Kungurian; the top of the Microbaculispora villosa Zone (APP3.3) lies in the middle Roadian, not the early Roadian; the top of the Dulhuntyispora granulata Zone (APP4.1) lies in the Wordian, not in the latest Roadian; the top of the Didecitriletes ericianus Zone (APP4.2) lies in the first half of the Wuchiapingian, not the latest Wordian; the Dulhuntyispora dulhuntyi Zone (APP4.3) is exceptionally short and lies within the Wuchiapingian, not the early Capitanian; and the top of the Dulhuntyispora parvithola Zone (APP5) lies at or near the Permo-Triassic boundary, not in the latest Wuchiapingian.  相似文献   
9.
A plume of herring larvae dispersing from a spawning site at Clythness in the Moray Firth (northern Scotland) was surveyed during early September 1985. Several cohorts of larvae were evident from the length distributions, and these were arranged in order of increasing length (age) towards the south-west. The spacing of cohort centres indicated a drift rate of 1–2 km day−1.Calanoid copepod nauplii constituted the major proportion of the diet of larvae <10 mm sampled during the study. Cyclopoid copepod nauplii and gastropod veligers were not found in the diet although they were present in the water. The distribution of nauplii in the region was inversely correlated with the concentration of phytoplankton chlorophyll, and nauplii concentrations were above average in the vicinity of the herring spawning site. The drift trajectory of the herring larvae took them towards an area of high copepodite and adult copepod concentration—items which formed an increasing part of the diet of larger (older) larvae.  相似文献   
10.
Floating marine debris, particularly derelict fishing gear, is a hazard to fish, marine mammals, turtles, sea birds, coral reefs, and even human activities. To ameliorate the economic and environmental impact of marine debris, we need to efficiently locate and retrieve dangerous debris at sea. Guided by satellite-derived information, we made four flights north of Hawaii in March and April 2005. During these aerial surveys, we observed over 1800 individual pieces of debris, including 122 derelict fishing nets. The largest debris concentrations were found just north of the North Pacific Transition Zone Chlorophyll Front (TZCF) within the North Pacific Subtropical Convergence Zone (STCZ). Debris densities were significantly correlated with sea-surface temperature (SST), chlorophyll-a concentration (Chla), and the gradient of Chla. A Debris Estimated Likelihood Index (DELI) was developed to predict where high concentrations of debris would be most likely in the North Pacific during spring and early summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号