首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Shaking table tests were conducted to investigate the response of rectangular wooden blocks and block assemblies of various sizes and slenderness to harmonic and earthquake base excitation. The shaking tests were followed by an analytical and a numerical study of response of single blocks and block assemblies. The analytical study was aimed at establishing criteria for the initiation of rocking and of overturning in response to harmonic base motion and consisted of solving numerically the differential equations of motion of a rigid block on a rigid foundation. The numerical study, in the course of which the response of both single blocks and block assemblies was examined, was implemented by means of the Distinct Element Method (DEM). Prior to the DE simulation of actual shaking tests, preliminary analyses were conducted to confirm numerical stability and to evaluate material and damping parameters. Comparing the recorded time histories with those given by the analytical study and the DE simulation, good agreement was found. The distinct element model in use appeared to follow the highly non-linear motion of rigid body assemblies faithfully to reality. On the basis of the results, provided that the necessary parameters are carefully estimated, the employed DE model can be regarded as an appropriate tool to simulate response of rigid body assemblies to dynamic base excitation.  相似文献   
2.
This paper discusses on the shaking table test results of two 1:4 scale model of two-story masonry structure typically used in constructing low-rise residential buildings. This test is performed to provide a better understanding of the seismic behavior of the PP-band (polypropylene band) mesh retrofitted adobe masonry house. The test structure is subjected to a series of different levels of harmonic motion that applied along the longitudinal direction. The results of the shaking table tests on building models show that the PP-band retrofitting technique can enhance the safety of masonry buildings, even during severe ground motion.  相似文献   
3.
The collapse of stone masonry is one of the greatest causes of death in major earthquake events around the world. This paper investigates a recently developed retrofitting technology specifically aimed at preventing or prolonging the collapse of stone masonry buildings under strong earthquakes. This technology uses common polypropylene packaging straps to form a mesh, which is then used to prevent or prolong collapse. This paper examines the findings from static and dynamic testing of the proposed retrofit. It is shown that the proposed technique effectively prevents brittle masonry collapse and the loss of debris.  相似文献   
4.
Liquefaction induced damage to the built environment is one of the major causes of damage in an earthquake. Since Niigata earthquake in 1964, it has been popularly recognized that the liquefaction induced ground failures caused severe damage in various forms such as sand boiling, ground settlement, lateral spreading, landslide, etc. Since then, understanding the mechanism of liquefaction phenomena became very important to take measures against the liquefaction induced ground failures. To understand the mechanism of liquefaction, it is important to consider the soil as an assemblage of particles. A continuum approach may fail to explain some of the phenomena associated with liquefaction. Discrete approach, such as distinct/discrete element method (DEM), is an effective method that can simulate the mechanism of liquefaction and associated phenomena well at the microscopic level.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号