首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   1篇
地球物理   5篇
天文学   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  1986年   2篇
排序方式: 共有7条查询结果,搜索用时 23 毫秒
1
1.
The dominant emission from bare strange stars is thought to be electron–positron pairs, produced through spontaneous pair creation (SPC) in a surface layer of electrons tied to the star by a superstrong electric field. The positrons escape freely, but the electrons are directed towards the star and quickly fill all available states, such that their degeneracy suppresses further SPC. An electron must be reflected and gain energy in order to escape, along with the positron. Each escaping electron leaves a hole that is immediately filled by another electron through SPC. We discuss the collisional processes that produce escaping electrons. When the Landau quantization of the motion perpendicular to the magnetic field is taken into account, electron–electron collisions can lead to an escaping electron only through a multistage process involving higher Landau levels. Although the available estimates of the collision rate are deficient in several ways, it appears that the rate is too low for electron–electron collisions to be effective. A simple kinetic model for electron–quark collisions leads to an estimate of the rate of pair production that is analogous to thermionic emission, but the work function is poorly determined.  相似文献   
2.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   
3.
We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection–diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.  相似文献   
4.
The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied. We are able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.  相似文献   
5.
The linear response of a selected arch dam to harmonic upstream, cross-stream or vertical ground motion is presented for a wide range of the important system parameters characterizing the properties of the dam, impounded water, reservoir boundary materials and foundation rock. Based on these frequency response functions, the hydrodynamic and foundation flexibility effects in the dynamic response of arch dams are investigated.  相似文献   
6.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   
7.
The available substructure method and computer program for the steady-state, harmonic response analysis of arch dams, including the hydrodynamic effects, are extended to consider flexibility of the foundation rock and to include Fourier synthesis of harmonic responses to obtain the earthquake response of arch dams. By efficient evaluation of hydrodynamic terms, interpolation of frequency response functions and more efficient computer programming, the computational costs for analysing arch dams have been reduced by an order of magnitude relative to the available procedure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号