首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
地球物理   1篇
地质学   3篇
海洋学   1篇
自然地理   3篇
  2017年   1篇
  2015年   2篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Abstract A multidisciplinary study was conducted on the section of the Siwalik Group sediments, approximately 5000 m thick, exposed along the Karnali River. Analysis of facies, clay mineralogy and neodymium isotope compositions revealed significant changes in the sedimentary record, allowing discussion of their tectonic or climatic origin. Two major changes within the sedimentary fill were detected: the change from a meandering to a braided river system at ca 9.5 Ma and the change from a deep sandy braided to a shallow sandy braided river system at ca 6.5 Ma. The 9.5‐Ma change in fluvial style is contemporaneous with an abrupt increase of ?Nd(0) values following a ?Nd(0) minimum. This evolution indicates a change in source material and erosion of Lesser Himalayan rocks within the Karnali catchment basin between 13 and 10 Ma. The tectonic activity along the Ramgarh thrust caused this local exhumation. By changing the proximity and morphology of relief, the forward propagation of the basal detachment to the main boundary thrust was responsible for the high gradient and sediment load required for the development of the braided river system. The change from a deep sandy braided to a shallow sandy braided river system at approximately 6.5 Ma was contemporaneous with a change in clay mineralogy towards smectite‐/kaolinite‐dominant assemblages. As no source rock change and no burial effect are detected at that time, the change in clay mineralogy is interpreted as resulting from differences in environmental conditions. The facies analysis shows abruptly and frequently increasing discharges by 6.5 Ma, and could be linked to an increase in seasonality, induced by intensification of the monsoon climate. The major fluvial changes deciphered along the Karnali section have been recognized from central to western Nepal, although they are diachronous. The change in clay mineralogy towards smectite‐/kaolinite‐rich assemblages and the slight decrease of ?Nd(0) have also been detected in the Bengal Fan sedimentary record, showing the extent and importance of the two major events recorded along the Karnali section.  相似文献   
2.
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward.  相似文献   
3.
Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.  相似文献   
4.
The skunk clownfish (Amphiprion akallopisos) has a disjunct distribution, occurring in the Eastern Indian Ocean (EIO) and the Western Indian Ocean (WIO), separated by several thousands of kilometres. Information on connectivity of marine species is very important for the correct spacing of marine protected areas, a powerful instrument for the protection of coral reefs. The population genetic structure of A. akallopisos was analysed in order to investigate connectivity amongst populations and to explain the disjunct distribution of the species. A fragment of the mitochondrial control region was used to investigate the genetic population structure. Fin clips were collected from 263 individuals at 14 sites in the WIO and three sites in the EIO. The obtained DNA sequences were used to calculate genetic diversity, evaluate demographic history and to construct a haplotype network. An analysis of molecular variance (AMOVA) was conducted to evaluate the significance of the observed genetic population structure. None of the identified 69 haplotypes was shared between the WIO and EIO. Haplotype as well as nucleotide diversity was considerably higher in the EIO than in the WIO. Significant genetic population structure was revealed by an AMOVA with an overall φst‐value of 0.28 (P < 0.001) in the Indian Ocean. The overall AMOVA (φst = ?0.00652) was not significant in the EIO, but was significant in the WIO (φst = 0.016; P < 0.01). Demographic analysis indicated population expansion in the EIO and WIO. Population genetic analysis revealed highly restricted gene flow between the EIO and WIO. Genetic diversity was much higher in the EIO than in the WIO, suggesting that the EIO is the geographical origin of the species. Given the large distance between the disjunct populations and the short pelagic larval duration, long‐distance dispersal is rather unlikely. A stepping stone model involving islands in the Central Indian Ocean is a more likely scenario for colonization of the WIO.  相似文献   
5.
A morphostructural analysis of a Pliocene flood basalt formation in the southern Neuquén basin (40°S) shows evidence of contractional deformation less than 3.5 Ma ago. This formation exhibits a general dip towards the south‐east, with relict outcrops located 100 m higher than the main source volcano, which suggests a local tilting of the lava flow. This tilt has been brought about by Plio‐Quaternary reactivation of the eastern border of the Sañico Massif along two thrusts that offset the lava flow. Another long‐wavelength bulge in the southern part of the lava flow unit indicates a possible Pliocene uplift of the North Patagonian Massif. These results provide new evidence of continuing shortening in the Neuquén basin during the Plio‐Quaternary, challenging the hypothesis that an extensional regime has existed since the end of the Miocene in this basin.  相似文献   
6.
Although the Neuquén basin in Argentina forms a key transitional domain between the south‐central Andes and the Patagonian Andes, its Cenozoic history is poorly documented. We focus on the sedimentologic and tectonic evolution of the southern part of this basin, at 39–40°30′S, based on study of 14 sedimentary sections. We provide evidence that this basin underwent alternating erosion and deposition of reworked volcaniclastic material in continental and fluvial settings during the Neogene. In particular, basement uplift of the Sañico Massif, due to Late Miocene–Pliocene intensification of tectonic activity, led to sediment partitioning in the basin. During this interval, sedimentation was restricted to the internal domain and the Collon Cura basin evolved towards an endorheic intermontane basin. From stratigraphic interpretation, this basin remained isolated 7–11 Myr. Nevertheless, ephemeral gateways seem to have existed, because we observe a thin succession downstream of the Sañico Massif contemporaneous with the Collon Cura basin‐fill sequence. Comparisons of stratigraphic, paleoenvironmental and tectonic features of the southern Neuquén basin with other foreland basins of South America allow us to classify it as a broken foreland with the development of an intermontane basin from Late Miocene to Late Pliocene. This implies a thick‐skinned structural style for this basin, with reactivation of basement faults responsible for exhumation of the Sañico Massif. Comparison of several broken forelands of South America allows us to propose two categories of intermontane basins according to their structural setting: subsiding or uplifted basins, which has strong implications on their excavation histories.  相似文献   
7.
The Siwalik Group which forms the southern zone of the Himalayan orogen, constitutes the deformed part of the Neogene foreland basin situated above the downflexed Indian lithosphere. It forms the outer part of the thin-skinned thrust belt of the Himalaya, a belt where the faults branch off a major décollement (MD) that is the external part of the basal detachment of Himalayan thrust belt. This décollement is located beneath 13 Ma sediments in far-western Nepal, and beneath 14.6 Ma sediments in mid-western Nepal, i.e., above the base of the Siwalik Group. Unconformities have been observed in the upper Siwalik member of western Nepal both on satellite images and in the field, and suggest that tectonics has affected the frontal part of the outer belt since more than 1.8 Ma. Several north dipping thrusts delineate tectonic boundaries in the Siwalik Group of western Nepal. The Main Dun Thrust (MDT) is formed by a succession of 4 laterally relayed thrusts, and the Main Frontal Thrust (MFT) is formed by three segments that die out laterally in propagating folds or branch and relay faults along lateral transfer zones. One of the major transfer zones is the West Dang Transfer Zone (WDTZ), which has a north-northeast strike and is formed by strike-slip faults, sigmoid folds and sigmoid reverse faults. The width of the outer belt of the Himalaya varies from 25 km west of the WDTZ to 40 km east of the WDTZ. The WDTZ is probably related to an underlying fault that induces: (a) a change of the stratigraphic thickness of the Siwalik members involved in the thin-skinned thrust belt, and particularly of the middle Siwalik member; (b) an increase, from west to east, of the depth of the décollement level; and (c) a lateral ramp that transfers displacement from one thrust to another. Large wedge-top basins (Duns) of western Nepal have developed east of the WDTZ. The superposition of two décollement levels in the lower Siwalik member is clear in a large portion of the Siwalik group of western Nepal where it induces duplexes development. The duplexes are formed either by far-travelled horses that crop out at the hangingwall of the Internal Décollement Thrust (ID) to the south of the Main Boundary Thrust, or by horses that remain hidden below the middle Siwaliks or Lesser Himalayan rocks. Most of the thrusts sheets of the outer belt of western Nepal have moved toward the S–SW and balanced cross-sections show at least 40 km shortening through the outer belt. This value probably under-estimates the shortening because erosion has removed the hangingwall cut-off of the Siwalik series. The mean shortening rate has been 17 mm/yr in the outer belt for the last 2.3 Ma.  相似文献   
8.
This paper discusses the nature and origin of subsurface sediment mobilization processes in deep marine clay-rich environments. In the studied area of the southern Barbados accretionary prism, new geophysical acquisitions have emphasized the spectacular widespread development of mud volcanoes that are well-developed along ramp anticlines and along sigmoidal rises with trends that are oblique to the axes of the main folds of the accretionary wedge. On some active mud volcanoes, heat-flow measurements show high positive anomalies related to high fluxes of mud transfer. The mobilized solid fraction expelled by the mud volcanoes does not originate from a unique source bed but from various formations pierced by the mud conduits and is driven by the water phase. The area studied also exhibits trends of structures corresponding to sub-circular massive local uplifts of deformed but well-preserved stratified sediments (turbidites and hemipelagics). No piercing shale diapirs have been encountered in this area. Some of these local uplift structures are complicated by the development of collapses, calderas, and superimposed mud volcanoes. Mud volcanism corresponds fundamentally to fluid displacement (water and gas), whereas massive sedimentary uplift corresponds to large vertical displacements of stratified solid levels but for which the deep cause could be partly the intrusion of mud plugs. Both are dynamic phenomena controlled by the development of overpressure at depth, contributing to sedimentary mobilizations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号