首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
地球物理   21篇
地质学   14篇
天文学   1篇
综合类   1篇
自然地理   14篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   5篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有54条查询结果,搜索用时 265 毫秒
1.
地下水资源可持续利用的一个急待解决的重要问题,是对地下水补给和更新能力的评价.利用环境同位素技术研究地下水的补给和可更新性是当前较为新颖的方法之一.在西北干旱、半干旱的隐伏岩溶地区,地下水埋藏条件复杂,常规的地质勘探方法所能提供的水文地质信息有限,环境同位素方法在研究地下水的补给及可更新能力方面发挥了优势,可对传统方法进行补充和验证.其结果表明,研究区隐伏岩溶水形成较早,且有大量现代水的混入,平均混入量为54%.说明区内隐伏岩溶水的补给和更新能力较好.环境同位素分析结果还显示,大岔河隐伏岩溶水为一相对独立、半开放的水文地质单元,其补给来源部分为流域内大气降水、地表水的补给,部分为东南部三道沟岩溶地下水的补给;根据环境同位素EPM模型计算,地下水的滞留时间为36 a.地下水储存量为1.314×108 m3; 储水系数为7.29×10-3.这一结果与传统勘探方法的计算结果基本吻合,说明环境同位素方法的实用性.  相似文献   
2.
ABSTRACT Data are presented about modern sediment discharge of the Swiss rivers and related to the size of catchments. The information reveals that the Central Alps have experienced denudation rates of ≈0.15 mm yr−1 in the foreland, and ≈0.5 mm yr−1 in the Alpine core. Mapping, however, indicates that modern erosion only affects 30–50% of the Alpine surface, and that fluvial and associated hillslope processes have focused erosion in 50–200-m-deep valleys. These valleys are incised into the glacial surface. If this limited spatial extent of erosion is considered, then effective erosion rates are significantly higher than average denudation rates. These effective rates equal or locally exceed modern rates of rock uplift. This implies that the modification of erosional processes related to the Pleistocene/Holocene climate change has resulted in an increase in the relief at a local scale. At a drainage basin scale, however, the relief appears not to change at present.  相似文献   
3.
 Acidification of groundwater lags behind acid deposition due to the relatively long water residence time in conjunction with various buffering processes in the soil zone and deeper aquifer (chemical weathering, cation exchange, sulfate sorption, and N uptake by the biomass). Extensive field data from eight forested catchments in the Bunter Sandstone of the Black Forest, including results from water budget studies and hydrochemical analysis of stream and spring waters, were used to simulate the future evolution of ground-water acidification with the MAGIC model. The present acid deposition exceeds the “critical load” (here meaning buffering due to chemical weathering and protonation of organic acids) in six of eight catchments. Two catchments are well buffered because they contain carbonate-bearing layers in the Upper Bunter sandstone. Transient buffering (i.e., cation exchange, N uptake, the sulfate sorption) thus far prevents worse acidification, but this effect will decline in the future. For one of the poorly buffered catchments (Seebach), a two-layer simulation was carried out, based on extensive data from 10 years of measurements. Validation of the long-term simulations by hydrochemical and soil data was hampered by strong annual variations but generally supported by paleolimnological studies. In the future, reductions in the S deposition by 20% and the N deposition by 10% up to the year 2030 are assumed as the most probable scenario. N uptake through soil and vegetation will come to an end as suggested by decreasing C/N ratios of the organic matter. This process is arbitrarily included in the simulations. In the periglacial soil layer, acidification will decrease until the year 2030 and then approach a steady-state condition. In the fractured aquifer, acidification will also proceed at a decreasing rate; however, sulfate desorption up to the year 2130, the end of simulated period, will prevent earlier remediation. Despite a significant reduction in S deposition since the mid-1980s, further efforts are necessary to reduce the emission of acidifying substances. Liming in the recharge area is partially effective to ameliorate “shallow” groundwater but largely fails to ameliorate “deeper” groundwater in the sandstone aquifer. Received: 30 July 1996/Accepted: 23 January 1997  相似文献   
4.
The first phase (1997–2003) of the Global Geodynamics Project (GGP) has now been completed. Data from superconducting gravimeters (SGs) within GGP have shown great capabilities in a wide spectrum of geophysical applications from the tidal studies to the long-period seismology. Here, we compare the noise levels of the different contributing stations over the whole spectrum. We use three different processing procedures to evaluate the combined instrument-plus-site noise in the long-period seismic band (200–600 s), in the sub-seismic band (1–6 h) and in the tidal bands (12–24 h). The analysis in the seismic band has demonstrated that SGs are particularly well suited for the studies of the long-period normal modes and thus are complementary to long-period seismometers. In the sub-seismic band, the power spectral densities, computed over a period of 15 continuous days for every GGP station, cross the New Low Noise Model of Peterson from T = 16 min to T = 4.6 h. SG data are therefore appropriate for studying long-period seismic and sub-seismic modes. In the tidal bands, the noise comparison is realised by a least-squares fit to tides, local air pressure and instrumental drift, leading to gravity residuals where we estimate a standard deviation and average noise levels in different tidal frequency bands. Tidal gravity observations using SGs have also shown to be an independent validation tool of ocean tidal models, and they are therefore complementary to tide gauge and altimetric data sets. Knowledge of the noise levels at each station is important in a number of studies that combine the data to determine global Earth parameters. We illustrate it with the stacking of the data in the search for the gravity variations associated with the sub-seismic translational motions of the inner core, the so-called Slichter triplet.  相似文献   
5.
6.
7.
Effective barometric admittance and gravity residuals   总被引:1,自引:0,他引:1  
In the analysis of surface gravity signals that may originate from the Earth's core, the step of correcting for the atmospheric pressure fluctuations is one that must be done carefully. We apply two techniques for determining the local, or effective, barometric admittance function between simultaneous observations of surface gravity and pressure. The first is a frequency domain fit that computes the admittance on a band-by-band basis. Using data from both the Canadian and French superconducting gravimeters we determined that the magnitude of the local, or background, admittance increases smoothly and monotonically from about 0.2 μgal mbar−1 at long periods (> 10 days) to about 0.35 μgal mbar−1 at frequencies greater than 3 cycles per day (c.p.d.); the phase lag is within a few degrees of 180°. By comparison, the effective admittances of the large-scale harmonics of the solar heating tide (S1---S7) are much smaller, between 0.1 and 0.3 μgal mbar−1, for most of the harmonics of a day. In the second approach we fit a symmetrical time domain admittance function having lengths between 1 and 19 h using both a standard least-squares fit to a white noise residual and a new, and clearly superior, fit assuming a brown noise residual. Both time and frequency domain approaches give comparable results and contribute to a significant lowering of the residual level in non-tidal bands.  相似文献   
8.
The mechanical denudation rates of 81 large lake basins (lake area > 500 km2) were determined from long-term river loads and erosion maps. Using the drainage area/lake area ratios the mean sedimentation rates of the lakes were calculated for a porosity of 0.3. The mean sedimentation rates of different lake types vary between 0.1 mm/a (glacial lakes, lowland) and 5.4 mm/a (mostly sag basin lakes). The calculated lifetimes of the lakes are based on the lake volumes and mean sedimentation rates, assuming steady-state conditions and solely clastic material. On average, glacial lakes in highlands and fault-related lakes show the shortest lifetimes (c. 70 ka), glacial lakes in lowlands and rift lakes have the longest lifetimes (c. 1 Ma). Some lakes remain unfilled for very long time spans due to rapid subsidence of their basin floors. The calculated lifetimes are compared with those derived from sediment core studies. Most core studies indicate lower mechanical sedimentation rates than the calculated ones because a major part of the incoming sediment is trapped in deltas. However, a number of lakes (e.g., the Great Lakes of North America) show the opposite tendency which is largely caused by extensive shoreline erosion and resuspension. The lifetimes of large glacial lakes often exceed the duration of interglacials. Hence, their lifetimes are restricted by glaciation and not by sediment infill. Rift lakes persist for long time periods which exceed the calculated lifetimes in some cases. Time-dependent subsidence, basin extension, as well as the impact of climate change are briefly described.  相似文献   
9.
The product spectra of gravity and barometric pressure in Europe   总被引:11,自引:0,他引:11  
A total of 111 000 hourly values of gravity and barometric pressure from stations in Europe is analysed. The data consist of two sets of records from Brussels, an early set of 36 000 h length and a more recent set of 21 000 h length, a set of records from Bad Homburg of 24 000 h length, and a set of records from Strasbourg of 30 000 h length. All of the gravity measurements were made with similar superconducting instruments and the pressure data were recorded simultaneously at each superconducting gravimeter site. The four sets of records have different time bases, and to bring out common features and suppress individual station systematic errors, the product spectrum is introduced. Spectral density estimates are first computed for a common spectral window for each record, and the product spectrum is formed by multiplying individual spectral estimates across records. The cumulative distribution function is found for the product spectrum and confidence intervals are calculated from it by iteration. The product spectrum in gravity reveals a triplet of resonances in the subtidal band which are shown by an automated computer search to be uniquely associated with the translational modes of the solid inner core. The product spectrum in barometric pressure clearly reveals the first 10 solar heating tides in the atmosphere, but otherwise does not show common features with the gravity product spectrum. In particular, the triplet of resonances in the subtidal band of the gravity product spectrum do not show up in the product spectrum of barometric pressure, climinating the atmosphere as their source.  相似文献   
10.
New generation superconducting gravimeters (SGs), which have been demonstrated to be better than the best seismometers STS-1 at frequencies below 1 mHz, can be accepted as the quietest vertical seismometers for observation of long-period earth free oscillations. Wavelet filtering with narrow band-pass frequency response as shown in this paper is very helpful in removing at- mospheric pressure effects from on gravity records in long-period seismic mode frequency bands. The processing of high quality SG records after the great Sumatra earthquake (Dec. 26, 2004) with wavelet filtering leads to clear observations of all coupled toroidal modes below 1.5 mHz except these for 0T5, 0T7 and 1T1; moreover 1T2 and 1T3 are, for the first time, unambiguously revealed in the vertical components of the free oscillations. The three well-resolved splitting singlets of overtones 2S1 are observed from a single SG record for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号