首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Recently, black carbon has been introduced as the form of carbon that may be separated from the biologically mediated carbon cycle thereby representing the non-bioavailable fraction of the estimated organic carbon. It has been speculated that the bioavailability of organic matter may be a limiting factor for the presence of active bacteria within the sediments. In order to address this question, marine sediments were collected from the Thracian Sea (Eastern Mediterranean), a complex system impacted by riverine inputs and Black Sea water masses. In addition to counts of total bacteria, we estimated the fraction of active bacteria by using a destaining step to the DAPI staining method. Black carbon was also estimated following the thermal oxidation method in order to determine the fraction of the refractory organic matter. The fraction of black carbon to total organic carbon varied from 16% to 53% indicating that black carbon constitutes a significant pool of sedimentary organic carbon in the Thracian sea. A fraction ranging from 18% to 97% was scored as nucleoid containing cells. We did not record any significant differences in the fraction of nucleoid-containing bacteria among sediment depths (P<0.05) indicating that there was no accumulation of dead bacterial cells with depth. The same was observed for the fraction of black carbon and bioavailable organic carbon with sediment depth (P<0.05) indicating that benthic consumers are not the key regulators of the organic matter pool in these sediments but have a minor effect. A possible reason for these observations and for the uncoupling between the active bacterial fraction and the bioavailability of organic matter could be (i) the presence of refractory components in the estimated bioavailable organic matter and (ii) the hydrological and geological complexity of the study area. The North Aegean marginal slopes are highly unstable experiencing frequent seismic events. These events are capable of inducing sediment transport from the upper slopes thus altering the entire sediment profile. On the other hand, the significant correlations that were recorded between nucleoid-containing cells and phytopigments (chlorophyll a, phaeopigments, chloroplastic pigment equivalents) at all sediment depths indicate that bacterial communities respond immediately to the deposited phytodetritus, using it as a primary source of carbon and energy. Our data suggests that the Thracian Sea sediments are by no means homogeneous and can best be described as a mosaic controlled by numerous local and regional environmental factors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号