首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   5篇
地质学   1篇
综合类   1篇
自然地理   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 34 毫秒
1
1.
Alluvial fans are one of the most important landforms in geomorphological and paloenvironmental studies. The objective of this study was the application of clay mineral assemblages and micromorphological properties of the studied paleosols in the geomorphic surfaces of an alluvial fan in the eastern Isfahan as proxies for paleoenvironmental and paleoclimatic changes. Micromorphology, X-ray diffraction, and scanning electron microscopy approaches were used to study the representative pedons. The results indicated that the illuviation process in the calcareous soils of the arid regions of the eastern Isfahan was probably in response to Quaternary moist conditions. There was no significant difference between clay coating properties of the studied relict and buried paleosols. Clay mineralogical study suggested that kaolinite and illite were inherited from the parent materials, while smectite and palygorskite were formed in the soil environment. Paleoargillic horizon was characterized by smectite and calcic (especially the calcrete) horizons were dominated by palygorskite. Palygorskite was accumulated by both neoformation and illuviation processes. High clay content, high intensity of smectite peak, and activity of the illuviation process in paleoargillic horizon demonstrated the seasonality of climate (rainfall) even in the moist periods of Quaternary in Central Iran. Clay mineralogical assemblages suggested a trend of increasing environmental aridity in the study area. This study, therefore, highlighted the role of clay mineralogical investigations in arid lands’ geomorphological and paleoenvironmental researches.  相似文献   
2.
The annual timing of river flows might indicate changes that are climate related. In this study, trends in timing of low flows for the Reference Hydrometric Basin Network were investigated under three different hypotheses namely: independence, short‐term persistence (STP) and long‐term persistence (LTP). Both summer and winter time series were characterized with scaling behaviour providing strong evidence of LTP. The Mann–Kendall trend test was modified to account for STP and LTP, and used to detect trends in timing of low flows. It was found that considering STP and LTP resulted in a significant decrease in the number of detected trends. Numerical analysis showed that the timing of summer 7‐day low flows exhibited significant trends in 16, 9 and 7% of stations under independence, STP and LTP assumptions, respectively. Timing of summer low flow shifted toward later dates in western Canada, whereas the majority of stations in the east half of the country (except Atlantic Provinces) experienced a shift toward earlier dates. Timing of winter low flow experienced significant trends in 20, 12, and 6% of stations under independence, STP and LTP assumptions, respectively. Shift in timing of winter low flow toward earlier dates was dominant all over the country where it shifted toward earlier dates in up to 3/4 of time series with significant trends. There are local patterns of upward significant/insignificant trends in southeast, southwest and northern Canada. This study shows that timing of low flows in Canada is time dependent; however, addressing the full complexity of memory properties (i.e. short term vs long term) of a natural process is beyond the scope of this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
To study the soil-geomorphology relationships and the effect of past and present climate on soil formation, 10 representative pedons on different landforms, including rock pediment, mantled pediment, piedmont plain, playa margin and playa, were studied. Non-saline clay flat, saline clay flat with and without puffy grounds, wet zone, and salt crust were among the geomorphic surfaces observed in Sirjan playa. Soil moisture varies from mesic (on rock and mantled pediments) to aridic regimes (on piedmont plain, playa margins, playa and mantled pediment). Soil temperature regime in the area is mesic except on playa surfaces and mantled pediment which are thermic. Results of the study showed that soil salinity increased from the rock pediment to playa surfaces. The maximum EC of 314 dS/m was observed in the puffy ground clay flat. Kaolinite, illite, smectite, chlorite and palygorskite clay minerals were identified using XRD analysis. Coatings and infillings of CaCO3 were observed in pediment and gypsum lenticels and interlocked plates were found on piedmont plain and playa. Clay coatings and infillings in the piedmont plain suggest the presence of a more humid paleoclimate in the history of the area.  相似文献   
4.
In most studies, trend detection is performed under the assumption of a monotonic trend. However, natural processes and, in particular, hydro‐climatic variables may not conform to this assumption. This study performs a simultaneous evaluation of gradual and abrupt changes in Canadian low streamflows using a modified Mann–Kendall (MK) trend test and a Bayesian multiple change‐point detection model. Statistical analysis, using the whole record of observation (under a monotonic trend assumption), shows that winter and summer low flows are dominated by upward and downward trends, respectively. Overall, about 20% of low flows are characterized by significant trends, where ~80% of detected significant trends are upward (downward) for winter (summer) season. Change‐point analysis shows that over 50% of low‐flow time series experienced at least one abrupt change in mean or in direction of trend, of which ~50% occurred in 1980s with a mode in 1987. Analysis of segmented time series based on a common change‐point date indicates a reduced number of significant trends, which is attributed to first, the change in nonstationarity behaviour of low flows leading to less trend‐type changes in the last few decades; and second, the false detection of trends when the sample data are characterized by shifts in mean. Depending on whether the monotonic trend assumption holds, the on‐site and regional interpretation of results may vary (e.g. winter low flow) or even lead to contradictory conclusions (e.g. summer low flow). Trend analysis of last two decades of streamflows shows that (1) winter low flows are increasing in eastern Canada and southern British Columbia, whereas they are decreasing in western Canada; (2) summer low flows are increasing in central Canada, southern British Columbia and Newfoundland, whereas they are decreasing in Yukon and northern British Columbia and also in eastern Ontario and Quebec. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   
6.
7.
The hydroclimatology of prairie‐dominated portions of the Lake Winnipeg watershed was investigated to determine the possible presence of trends and shifts in variables that may influence the streamflow regimes and water quality of Lake Winnipeg. The total annual streamflow, precipitation, runoff ratio and daily maximum streamflow in the two major tributaries of the Assiniboine River and Red River were analysed for a range of nonstationary behaviours. Each of these rivers has been gauged for more than 90 years. The methods used included a nonparametric Mann–Kendall test modified to account for diverse memory properties (i.e. short term versus long term) and a Bayesian change point detection model to identify possible segments of time series with inconsistent nonstationary behaviour. Although there is no evidence of statistically significant trends in precipitation and streamflow in the Assiniboine River watershed, a shift‐type nonstationarity in annual runoff and runoff ratio was observed in this area, which is manifested in the form of a sequence of wet and dry spells during the last century. Precipitation and runoff metrics in the American portion of the study area (i.e. Red River watershed) were characterised with both gradual and abrupt changes with an extremely increasing rate of streamflow beyond that of intensified precipitation. The nonproportional watershed runoff response is attributed to the dynamic nature of contributing areas that, together with the semiarid climate, leads to sudden changes of streamflow due to major or even some times minor changes in climate inputs. It is evident that streamflow in the depression‐dominated landscapes of the semiarid glaciated plains of North America is particularly sensitive and vulnerable to minor climate variability and change. This study provides valuable insights into the highly complex precipitation–runoff relationship in depression‐dominated landscapes and could have important implications for water management in this part of North America and comparable regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit’s purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis (PCA) was done to identify the most important components. The results indicated that Morphological Index (MI) was the best index to show the degree of soil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component (PC1), Vogt (V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations  相似文献   
9.
Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran   总被引:4,自引:0,他引:4  
A geomorphic hierarchical downscaling method was used to decompose the forms and processes forming the landscapes and their subdivisions in the main region of Zayandeh-rud Valley. The purpose of this study was to determine the degree of soil heterogeneity and to check if K-entropy would be a good measure of soil evolution. Soil diversity analyses were performed considering soil families as individuals of soil entities in each geomorphic or taxonomic category level. Pedodiversity indices were used to follow the trend of soil and landscape evolution. The relationships between K-entropy (Shannon diversity index) and pedo-richness versus increasing area were analyzed to find out the effects of soil–landscape evolution on complexity of soil patterns in different geomorphic surfaces. Entropy–age relationship was studied to check the pedogenetic pathways responsible for soil landscape evolution. The soil diversity increases as geomorphic and taxonomic hierarchy levels decrease. The diversity indices were high when the sequence of soil horizons in a homogeneous family was also investigated. An increase in K-entropy of soil and landscape during time confirms the hypothesis of soil divergence evolution, whereby differences in initial conditions or local perturbations, and dynamic instability appear to have produced more variable soils and landscapes in the study area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号