首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   3篇
综合类   1篇
  2022年   1篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
辽河油田杜84块兴隆台油层为超稠油油藏.储层埋藏浅,压实程度与胶结程度低且以粘土矿物胶结为主,处于早成岩阶段.储层孔隙发育, 以原生粒间孔为主,次为粒间溶孔和裂隙孔.根据铸体图象和压汞曲线获得的孔隙结构特征参数确定,该储层孔隙直径大,喉道直径中等,属大孔中喉道型.因此该储层物性好,含油饱和度高,是本区的主要开发储层.  相似文献   
2.
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton, the North China craton, and the Dabie orogenic belt in the southeast. This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage. This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography. The station-pair double-difference with waveform cross-correlation technique was employed. We used a multiscale resolution 3-D initial model derived from the combination of high-resolution 3-D vS models within the region of interest to account for the lateral heterogeneity in the upper crust. The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault. Sedimentary basins are delineated on both sides of the fault with slow velocities, while the fault zone is characterized by high velocity in the crust and uppermost mantle. The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt (MLYMB), implying that the Tan-Lu fault might have formed a channel for magma intrusion. Magmatic material in Chao Lake is likely connected to the partial melting, assimilation, storage, and homogenization of the uppermost mantle and the lower crustal rocks. The intrusions, however, seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction, thereby losing its deep trail due to extensional erosion.  相似文献   
3.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   
4.
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号