首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   34篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed-layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth proposed by Gryning and Batchvarova (1994). However, most zero-order slab type models of mixed-layer height may be applied. The use of the model requires only information on those meteorological parameters that are needed in operational applications of ordinary zero-order slab type models of mixed-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence, although this is usually neglected in operational models of mixed-layer height owing to lack of data. Model performance is tested using data from the CIRCE experiment.  相似文献   
2.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   
3.
Long-Term Mean Wind Profiles Based on Similarity Theory   总被引:1,自引:1,他引:0  
We provide general forms for long-term mean wind profiles from similarity-based wind profiles, beginning with a probabilistic adaptation of Monin–Obukhov similarity theory. We develop an analytical formulation for the stability distributions prevailing in the atmospheric surface layer, which in turn facilitates the derivation of a long-term mean wind profile based on Monin–Obukhov similarity theory. The modelled stability distributions exhibit good agreement with measurements from sites having different local conditions. The long-term wind profile formulation is further extended to include the influence of the depth of the atmospheric boundary layer (h), which becomes relevant for heights above h/3, and the resultant long-term ‘tall’ profile form also matches observations.  相似文献   
4.
A method to construct a nomogram of the daytime mixed-layer-height evolution is presented. The nomogram will be specific for a given location and land surface type and is intended to be an easy tool to achieve a general understanding of mixed-layer behaviour. Also it is a pedagogical graphical one-pager that displays the bulk of data that controls the evolution of the mixed layer. Nomograms from northern, central and southern Europe are presented and discussed. Comparison with data from two sites shows good agreement although the nomograms overestimated the mixing height when it was low.  相似文献   
5.
Based on measurements at Sodankylä Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10–20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30–50% of the values measured over a coniferous forest.The regional momentum flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum flux can be determined independently of the regional sensible heat flux. At unstable conditions the two models become coupled.The information that is needed by the parameterised blending height method and by the mixed-layer evolution method in order to derive the regional fluxes of momentum and sensible heat can be obtained from radiosonde profiles of wind speed and temperature.  相似文献   
6.
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.  相似文献   
7.
Summary  This paper summarises some of the key results from two European field programmes, WINTEX and LAPP, undertaken in the Boreal/Arctic regions in 1996–98. Both programmes have illustrated the very important role that snow plays within these areas, not only in the determination of energy, water and carbon fluxes in the winter, but also in controlling the length of the summer active season, and hence the overall carbon budget. These studies make a considerable advance in our knowledge of the fluxes from snow-covered landscape and the interactions between snow and vegetation. Also some of the first measurements of greenhouse gas fluxes (carbon dioxide and methane) are reported for the European arctic and sub-arctic. The measurements show a considerable variability across the arctic, with very high instantaneous values from sub-arctic birch and fen areas and extremely low fluxes reported from the polar desert in the high arctic. The overall annual budgets are everywhere limited by the very short active season in these regions. The heat flux over a high latitude boreal forest during late winter was found to be high. At low solar angles the forest shades most of the snow surface, therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. This indicates that in areas with sparse vegetation and low solar angles, absorption of direct solar radiation is due to an apparent vegetation cover, which is much greater than the actual one. The first steps are taken in using these measurements to improve models, both point soil/vegetation/atmosphere transfer schemes and 3D meteorogical models. The results are encouraging; increasing the realism progressively improves the representation of the fluxes. A start is made in developing landscape, or catchment scale models. There seems to be some hope that comparatively simple relationships between evaporation and photosynthesis and leaf area may be sufficiently robust to allow the use of remotely sensed images to investigate the areally averaged exchanges. It is suspected that high latitude regions will experience considerable climatic and environmental change in the coming decades. A well found prediction of how these regions will respond requires a comprehensive knowledge of how vegetation will respond and how the changed vegetation will interact with the snow cover and the atmosphere. The studies from the LAPP and WINTEX programmes presented in this volume are an important contribution to this understanding and provide a useful foundation for future research. Received March 6, 2001  相似文献   
8.
Summary  A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs’ approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyl?, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime sensible heat fluxes and especially the pronounced maximum observed in the afternoon. Additional model simulations indicate that this drawback is to a large extent removed by the implementation of a shading factor in the original Deardorff scheme. The shading factor, as discussed in Gryning et al. (2001), accounts for the fact that in areas with sparse vegetation and low solar angles, both typical for the northern boreal forests in wintertime, absorption of direct solar radiation is due to an apparent vegetation cover which is much greater than the actual one (defined as the portion of the ground covered by vegetation projected vertically). Moreover, the observed asymmetry in the diurnal variation of the sensible heat flux indicates that there might be a significant heat storage in the vegetation. The implementation of an objective heat storage scheme in the mesoscale model explains part of the observed diurnal variation of the sensible heat flux. Received November 12, 1999 Revised October 4, 2000  相似文献   
9.
Summary In this publication first results of an urban tracer experiment are reported. This experiment was realized in the framework of the Basel UrBan Boundary-Layer Experiment (BUBBLE) in an area with abundant information on turbulence and flow conditions available. Release height was close to roof level and so was the height of the concentration samplers. The meteorological conditions during the experiments were mainly convective, but due to the rough character of the underlying surface also the mechanical turbulence was substantial.The concentration distribution is found to be essentially Gaussian in the horizontal plane and some commonly used methods to estimate the plume widths in applied dispersion models are compared to the observations. From measurements at one site downwind of the source it is found that for a near-roof level source, only an insignificant vertical gradient in tracer concentration is present within a street canyon. Using a Lagrangian Particle Dispersion Model the tracer experiments are simulated. It is shown that the exact form of the parameterization for the flow and turbulence structure within the urban roughness sublayer is of great importance for the simulation results. Also the numerical simulation results underline the necessity (and difficulty) to describe the vertical profile of the dissipation rate of turbulent kinetic energy close to an urban surface.  相似文献   
10.
Author Index     

Authors Index

Author Index volume 103  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号