首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   1篇
  国内免费   10篇
测绘学   2篇
大气科学   79篇
地球物理   14篇
地质学   14篇
海洋学   2篇
天文学   3篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
Summary In this paper, we have tried to understand the ENSO, MJO and Indian summer monsoon rainfall relationships from observation as well as from coupled model results. It was the general feeling that El-Niño years are the deficient in Indian monsoon rainfall and converse being the case for the La-Niña years. Recent papers by several authors noted the failure of this relationship. We find that the model output does confirm a breakdown of this relationship. In this study we have seen that a statistically defined modified Indian summer monsoon rainfall (MISMR) index, a linearly regressed ISMR index and dynamical Webster index (WBSI), shows an inverse relationship with ENSO index during the entire period of integration (1987 to 1999). It is also seen from this study that the amplification of the MJO signals were large and the ENSO signals were less pronounced during the years of above normal ISMR. The MJO signal amplitudes were small and ENSO signals were strong during the years of deficient ISMR. It has been noted that here is a time lag between the MJO and ENSO signal in terms of their modulation aspect. If time lag is added with the ENSO signal then both signals maintain the amplitude modulation theory. A hypothesis is being proposed here to define a relationship between MJO and ENSO signals for the entire period between 1987 and 1999.Received September 18, 2002; revised November 22, 2002; accepted December 20, 2002 Published online: May 8, 2003  相似文献   
2.
3.
4.
Predictability of low frequency modes   总被引:4,自引:0,他引:4  
Summary In this paper we propose a procedure for the extended integration of low frequency modes of the time scale of 30 to 50 days. A major limitation of the extended integrations arise from a contamination of low frequency modes as a result of energy exchanges from the higher frequency modes. In this study we show an example on the prediction of low frequency mode to almost a month which is roughly 3 weeks beyond the conventional predictability. This was accomplished by filtering the higher frequency modes from the initial state. The initial state included a time mean state and a low frequency mode. The sea surface temperature anomalies on this time scale and the annual cycle were also prescribed.The specific experiment relates to the occurrence of a dry and a wet spell in the monsoon region. The meridional passage of an anticyclonic circulation anomaly over the lower troposphere and the eastward passage of a negative velocity potential anomaly over the upper levels of the Indian monsoon, on this time scale, are reasonably predicted. The aforementioned experiment was carried out with the 1979 data sets of the global experiment. A second example during an anomalous southward propagation of the low frequency waves over the Indian monsoon region during 1984 was also reasonably predicted by this model. Suggestions for further experimentation on the predictability of low frequency modes are proposed.With 16 Figures  相似文献   
5.
6.
This study entails the implementation of an experimental real time forecast capability for tropical cyclones over the Bay of Bengal basin of North Indian Ocean. This work is being built on the experience gained from a number of recent studies using the concept of superensemble developed at the Florida State University (FSU). Real time hurricane forecasts are one of the major components of superensemble modeling at FSU. The superensemble approach of training followed by real time forecasts produces the best forecasts for tracks and intensity (up to 5 days) of Atlantic hurricanes and Pacific typhoons. Improvements in track forecasts of about 25–35% compared to current operational forecast models has been noted over the Atlantic Ocean basin. The intensity forecasts for hurricanes are only marginally better than the best models. In this paper, we address tropical cyclone forecasts over the Bay of Bengal for the years 1996–2000. The main result from this study is that the position and intensity errors for tropical cyclone forecasts over the Bay of Bengal from the multimodel superensemble are generally less than those of all of the participating models during 1- to 3-day forecasts. Some of the major tropical cyclones, such as the November 1996 Andhra Pradesh cyclone and October 1999 Orissa super cyclone were well handled by this superensemble approach. A conclusion from this study is that the proposed approach may be a viable way to construct improved forecasts of Bay of Bengal tropical cyclone positions and intensity.  相似文献   
7.
Summary In this paper we present a methodology for evaluating rain rates from a mix of satellite and surface based observations. The component data sets include the outgoing longwave radiation (OLR), microwave radiometric data from the special sensor microwave imager (SSM/I) and surface raingauge data from the World Weather Watch. We have noted some deficiencies in the SSM/I algorithm-based rain rate over land areas; the OLR-based rain rates exhibit a larger lateral spread and lower intensities than the observed rainfall structures. The proposed combined method assimilates these three data sets to provide improved fields of global tropical rainfall.With 3 Figures  相似文献   
8.
Recurvature dynamics of a typhoon   总被引:1,自引:0,他引:1  
Summary In this paper we present some recent work on typhoon prediction with a high resolution global model. The emphasis of this paper is on typhoon recurvature. Here we include examples of successful typhoon recurvature track forecasts made from a very high resolution global spectral model. The main objective of this study however is to go beyond the forecasts, i.e. to interrogate the history tapes and to diagnose residue-free budgets of the divergence and vorticity. The premise of this paper is that the recurvature of the typhoons depends on both the usual advection of vorticity by the layer mean winds and the advection of divergence in the outflow layers of the storm.The region immediately outside the heavy rain area of the storm experiences large values of divergent outflows which contribute a significant advection of divergence. Through the Dine's compensation this region must, in consort, experience an enhancement of low level convergence and of deep convection, thus contributing to the storm motion. We distinguish two facets of storm motion and recurvature, one based on the conventional steering that invokes the advection of vorticity by a vertical integrated flow, the other is the generation mechanism proposed here. During recurvature the storm appears to move in a direction which is influenced by the rotational and the divergent flow dynamics. Increased vertical resolution in the outflow layer is shown to resolve stronger amplitudes in the outflow layer divergence and thus to contribute to improved forecasts of recurvature. A number of processes seem to simultaneously evolve, these include the strong advection of divergence part of the wind, enhancement of cumulus convection over this region, an enhancement of lower tropospheric convergence, generation of vorticity of the lower troposphere and the attendant recurvature.With 16 Figures  相似文献   
9.
This paper addresses two avenues for gaining insight into the hurricane intensity issue—the angular momentum approach and the scale interaction approach. In the angular momentum framework, the torques acting on a parcel's angular momentum are considered along an inflowing trajectory in order to construct the angular momentum budget. These torques are separable into three components: The pressure torque, the surface friction torque, and the cloud torque. All torques are found to diminish the angular momentum of an inflowing parcel, with the cloud torques having the most important role. In the scale interaction approach, energy exchanges among different scales within a hurricane are considered as a means of understanding hurricane intensity. It is found that the majority of kinetic energy contribution to the hurricane scales originates from potential-to-kinetic in-scale energy conversions. The contribution of mean-wave interactions in the kinetic energy varies with distance from the center and with the life stage of a storm. In the early stages, as the disorganized convection becomes organized on the hurricane scales, upscale energy transfers (i.e., from small to large scale) are found to take place in the outer radii of the storm. In a mature storm, the kinetic energy transfers are downscale, except for the inner radii.  相似文献   
10.
Summary Climate variations in the Caribbean, largely manifest in rainfall activity, have important consequences for the large-scale water budget, natural vegetation, and land use in the region. The wet and dry seasons will be defined, and the important roles played by the El Ni?o-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) in modulating the rainfall during these seasons will be discussed. The seasonal climate forecasts in this paper are made by 13 state of the art coupled atmosphere-ocean general circulation models (CGCMs) and by the Florida State University Synthetic Superensemble (FSUSSE), whose forecasts are obtained by a weighted combination of the individual CGCM forecasts based on a training period. The success of the models in simulating the observed 1989–2001 climatology of the various forecast parameters will be examined and linked to the models’ success in predicting the seasonal climate for individual years. Seasonal forecasts will be examined for precipitation, sea-surface temperature (SST), 2-meter air temperature, and 850 hPa u- and v-wind components during the period 1989–2001. Evaluation metrics include root mean square (RMS) error and Brier skill score. It will be shown that the FSUSSE is superior to the individual CGCMs and their ensemble mean both in simulating the 1989–2001 climatology for the various parameters and in predicting the seasonal climate of the various parameters for individual years. The seasonal climate forecasts of the FSUSSE and of the ensemble mean of the 13 state of the art CGCMs will be evaluated for years (during the period 1989–2001) that have particular ENSO and NAO signals that are known to influence Caribbean weather, particularly the rainfall. It will be shown that the FSUSSE provides superior forecasts of rainfall, SST, 2-meter air temperature, and 850 hPa u- and v-wind components during dry summers that are modulated by negative SOI and/or positive NAO indices. Such summers have become a feature of a twenty-year pattern of drought in the Caribbean region. The results presented in this paper will show that the FSUSSE is a valuable tool for forecasting rainfall and other atmospheric and oceanic variables during such periods of drought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号