首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   14篇
  国内免费   32篇
大气科学   30篇
地球物理   20篇
地质学   3篇
海洋学   9篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   11篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  1999年   1篇
  1997年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
Salinity variability and its causes in the tropical Pacific are analyzed using observations, reanalysis products and model simulations. The mixed-layer salinity(MLS) budget analyses from observations and reanalysis products indicate that its interannual evolution is closely related to ENSO and is predominantly governed by surface forcing and surface advection in the western-central equatorial Pacific. It is found that the observed MLS tendency leads Nin?o3.4 by about 12 months due to the effect of negative freshwater flux(evaporation minus precipitation). These observation-based analyses are used to evaluate the corresponding simulation using GFDL-ESM2 M. It is evident that the model can simulate the spatiotemporal variations of MLS with some discrepancies compared to observations. In the warm pool of the equatorial Pacific the MLS tendency in the model is sensitive to ocean dynamics, however model biases cause the tendency to be underestimated. In particular, the freshwater flux is overestimated while the ocean surface zonal current and vertical velocity at the base of the mixed layer are underestimated. Due to model biases in representing the related physics, the effects of surface forcing on the simulated MLS budget are overestimated and those of subsurface and surface advection are relatively weak. Due to weaker surface advection and subsurface forcing than observed, the simulated compensations for surface forcing are suppressed, and the simulated MLS tendency that leads Nin?o3.4 by 8–10 months, which is shorter than the observed lead time. These results are useful for the interpretation of observational analyses and other model simulations in the tropical Pacific.  相似文献   
2.
3.
Freshwater flux (FWF) directly affects sea surface salinity (SSS) and hence modulates sea surface temperature (SST) in the tropical Pacific. This paper quantifies a positive correlation between FWF and SST using observations and simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to analyze the interannual variability in the tropical Pacific. Comparisons among the displacements of FWF, SSS and SST interannual variabilities illustrate that a large FWF variability is located in the west-central equatorial Pacific, covarying with a large SSS variability, whereas a large SST variability is located in the eastern equatorial Pacific. Most CMIP5 models can reproduce the fact that FWF leads to positive feedback to SST through an SSS anomaly as observed. However, the difference in each model's performance results from different simulation capabilities of the CMIP5 models in the magnitudes and positions of the interannual variabilities, including the mixed layer depth and the buoyancy flux in the equatorial Pacific. SSS anomalies simulated from the CMIP5 multi-model are sensitive to FWF interannual anomalies, which can lead to differences in feedback to interannual SST variabilities. The relationships among the FWF, SSS and SST interannual variabilities can be derived using linear quantitative measures from observations and the CMIP5 multi-model simulations. A 1 mm d-1 FWF anomaly corresponds to an SSS anomaly of nearly 0.12 psu in the western tropical Pacific and a 0.11°C SST anomaly in the eastern tropical Pacific.  相似文献   
4.
Tropical instability waves (TIWs) arise from oceanic instability in the eastern tropical Pacific and Atlantic Oceans, having a clear atmospheric signature that results in coupled atmosphere–ocean interactions at TIW scales. In this study, the extent to which TIW-induced surface wind feedback influences the ocean is examined using an ocean general circulation model (OGCM). The TIW-induced wind stress (τTIW) part is diagnostically determined using an empirical τTIW model from sea surface temperature (SST) fields simulated in the OGCM. The interactively represented TIW wind tends to reduce TIW activity in the ocean and influence the mean state, with largest impacts during TIW active periods in fall and winter. In December, the interactive τTIW forcing induces a surface cooling (an order of ?0.1 to ?0.3 °C), an increased heat flux into the ocean, a shallower mixed layer and a weakening of the South Equatorial Current in the eastern equatorial Pacific. Additionally, the TIW wind effect yields a pronounced latitudinal asymmetry of sea level field across the equator, and a change to upper thermal structure, characterized by a surface cooling and a warming below in the thermocline, leading to a decreased temperature gradient between the mixed layer and the thermocline. Processes responsible for the τTIW–induced cooling effects are analyzed. Vertical mixing and meridional advection are the two terms in the SST budget that are dominantly affected by the TIW wind feedback: the cooling effect from the vertical mixing on SST is enhanced, with the maximum induced cooling in winter; the warming effect from the meridional advection is reduced in July–October, but enhanced in November–December. Additional experiments are performed to separate the relative roles the affected surface momentum and heat fluxes play in the cooling effect on SST. This ocean-only modeling work indicates that the effect of TIW-induced wind feedback is small but not negligible, and may need to be adequately taken into account in large-scale climate modeling.  相似文献   
5.
黄土/古土壤的物源研究对于揭示第四纪气候变化和青藏高原隆升历史具有重要意义。本研究以位于黄土高原西部1.4 Ma以来的兰州黄土/古土壤沉积序列为研究对象,基于X射线衍射技术分析了黄土/古土壤中的主要矿物组成,侧重于碳酸盐矿物含量,追溯了兰州黄土/古土壤的直接物源。结果显示: (1)1.4 Ma以来兰州地区黄土/古土壤沉积物的主要直接源区为柴达木盆地沙漠区和阿拉善干旱区。(2)基于二元混合模型计算的潜在原始源区对兰州黄土白云石和总碳酸盐矿物的相对贡献率以及长石与石英比值结果一致支持1.4 Ma以来兰州黄土原始物源发生了多次变化。1.4~1.1 Ma和0.9~0.3 Ma青藏高原东北缘造山带(昆仑山、祁连山)和中亚造山带对兰州黄土的贡献相当,而1.1~0.9 Ma和0.3 Ma以来,中亚造山带对兰州黄土的物源贡献增加,这可能分别是对中更新世气候转型和0.3 Ma以来青藏高原及邻近地区干冷气候增强的响应。1.15 Ma和0.8 Ma兰州黄土/古土壤中高的白云石含量、碳酸盐矿物总含量以及0.8 Ma长石与石英比值的快速升高可能是对“昆黄运动”的响应,进而造成了昆仑山、祁连山对黄土高原物源贡献的增加。  相似文献   
6.
Numerical simulations using a version of the GFDL/NOAA Modular Ocean Model(MOM 3) are analyzed to demonstrate interdecadal pathway changes from the subtropics to the tropics in the South Pacific Ocean.After the 1976-77 climate shift,the subtropical gyre of the South Pacific underwent significant changes,characterized by a slowing down in its circulation and a southward displacement of its center by about 5-10 latitude on the western side.The associated circulation altered its flow path in the northwestern part of the subtropical gyre,changing from a direct pathway connecting the subtropics to the tropics before the shift to a more zonal one after.This effectively prevented some subtropical waters from directly entering into the western equatorial Pacific.Since waters transported onto the equator around the subtropical gyre are saline and warm,such changes in the direct pathway and the associated reduction in equatorward exchange from the subtropics to the tropics affected water mass properties downstream in the western equatorial Pacific,causing persisted freshening and cooling of subsurface water as observed after the late 1970s.Previously,changes in gyre strength and advection of temperature anomalies have been invoked as mechanisms for linking the subtropics and tropics on interdecadal time scales.Here we present an additional hypothesis in which geographic shifts in the gyre structure and location(a pathway change) could play a similar role.  相似文献   
7.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   
8.
Cui  Chaoran  Zhang  Rong-Hua  Wang  Hongna  Wei  Yanzhou 《中国海洋湖沼学报》2020,38(3):679-694
Journal of Oceanology and Limnology - Interaction between mesoscale perturbations of sea surface temperature (SSTmeso) and wind stress (WSmeso) has great influences on the ocean upwelling system...  相似文献   
9.
黄土/古土壤的物源研究对于揭示第四纪气候变化和青藏高原隆升历史具有重要意义。本研究以位于黄土高原西部1.4 Ma以来的兰州黄土/古土壤沉积序列为研究对象,基于X射线衍射技术分析了黄土/古土壤中的主要矿物组成,侧重于碳酸盐矿物含量,追溯了兰州黄土/古土壤的直接物源。结果显示: (1)1.4 Ma以来兰州地区黄土/古土壤沉积物的主要直接源区为柴达木盆地沙漠区和阿拉善干旱区。(2)基于二元混合模型计算的潜在原始源区对兰州黄土白云石和总碳酸盐矿物的相对贡献率以及长石与石英比值结果一致支持1.4 Ma以来兰州黄土原始物源发生了多次变化。1.4~1.1 Ma和0.9~0.3 Ma青藏高原东北缘造山带(昆仑山、祁连山)和中亚造山带对兰州黄土的贡献相当,而1.1~0.9 Ma和0.3 Ma以来,中亚造山带对兰州黄土的物源贡献增加,这可能分别是对中更新世气候转型和0.3 Ma以来青藏高原及邻近地区干冷气候增强的响应。1.15 Ma和0.8 Ma兰州黄土/古土壤中高的白云石含量、碳酸盐矿物总含量以及0.8 Ma长石与石英比值的快速升高可能是对“昆黄运动”的响应,进而造成了昆仑山、祁连山对黄土高原物源贡献的增加。  相似文献   
10.
中地壳的水和水岩相互作用实验及其地球物理涵义   总被引:2,自引:0,他引:2       下载免费PDF全文
本文重点报道了高温高压下流体与流体-岩石相互作用实验结果,提供了中地壳条件下流体性质和水岩反应速率数据.这些数据有助于理解中地壳的一些地球物理现象.作者进行了25℃~435℃和22~39 MPa条件下水-岩相互作用反应动力学实验.同时,研究水在近临界区至超临界区的性质.一般地说,中地壳大致位于10(15)至25 km的深度范围.各地的地壳厚度不同,但是中地壳高导-低速层的深度范围十分相似.中地壳的顶界温度处于300℃,底界大致为450℃范围,压力高达200 MPa以上.流体-岩石相互作用实验表明:硅酸盐矿物和岩石的硅最大溶解速率出现在300℃~400℃.此时,硅酸盐矿物格架解体.通常,地壳里普遍存在水、流体.地壳构造活动导致断裂空隙、减压、流体流动.这时,有可能导致中地壳处于300℃~450℃流体的压力减低,由超临界区进入临界态、亚临界态.这会引发强烈流动的水与岩石相互作用.溶解反应导致岩层的硅淋失,硅的强烈淋失又会导致硅酸盐矿物格架解体,岩石崩塌.同时,进一步促进流体的流动.实验表明300℃~400℃下的强烈水岩相互作用促进了岩石破坏,并有可能影响岩层的地球物理性质,如高导层出现.另外,实验和理论研究表明处于300℃~400℃流体具有高电导率性质.这些水岩相互作用会使中地壳出现高导-低速层.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号