首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
地质学   3篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 230 毫秒
1
1.
Dust storms commonly occur during the pre-monsoon (summer) season in north and northwest parts of India. Characteristics of dust events of the pressure gradient type are well understood. However, comprehensive studies on mechanism of convective dust storms in India are few. A convective dust storm which occurred on 21 April 2010 in association with a western disturbance over North India was hence studied. In the absence of in situ data, we used available satellite data to study the event. Dust storm that occurred on 20 April 2010 on the surface of the Thar Desert transported dust to northern and northwestern parts of India (Rajasthan, Haryana, Delhi and some parts of Uttar Pradesh). This formed a background of aerosols that affected the thunderstorm formed in association with western disturbance and the strong updraft in the thunderstorm carried the dust lingering in the atmosphere to higher altitudes. Large amount of aerosols carried to higher altitude suppressed the chance of precipitation by affecting the cloud top microphysics. Enhancement in evaporation due to an increase in aerosol concentration and strong downdrafts during dissipation of the thunderstorm resulted in emission of dust particles which led to the convective dust event of 21 April 2010.  相似文献   
2.
Coal, a fossil fuel, is the largest source of energy for the generation of electricity in India. In order to study the potential environmental hazards by coal based power plants, particulate matters were collected using Stack Monitoring Kit and gaseous pollutants by Automatic Flue Gas Analyzer. The morphological and chemical properties, mineralogical composition and particle size distributions have been determined by SEM–EDX, XRD and CILAS. The data revealed the presence of particulate matters, SO2, NOx in the range of 236–315, 162–238, 173–222 mg/Nm3 respectively. The emission of CO2 was in the range of 43,004–60,115 Nm3/h with an average of 52,830 Nm3/h. Among the elements, Fe > Mn > Al > Zn > B > Ni > Cr > Cu were present in substantially higher proportion than Pb > Mo > Cd > Se > As > Hg. It was found that most of the elements were concentrated on fly ash surface rather than coal, bottom ash and pond ash. This variation may be attributed to the fineness of fly ash particles with large surface ratio to mass. Mineralogical studies of coal and fly ash by X-ray diffraction revealed the presence of mullite, quartz, cristobalite and maghemite. Presence of mullite and quartz found in fly ash indicate the conversion of complex minerals to mullite and quartz at high temperature. Transfer Coefficient was calculated to determine the ratio of the enrichment of trace elements in fly or bottom ash with respect to coal and pond ash.  相似文献   
3.
This paper presents dust exposure study of 69 workers engaged in 11 categories of jobs over seven coalmines of Jharia Coalfields. Dust samples were analysed for dust concentration, maximum exposure limit (MEL), free silica and other minerals present, and particle size and shape. Study reveals that workers engaged in vicinity of coal/rock cutting operation, are exposed to higher dust concentration (50% samples exceeding MEL), and contain more fine particles (d 50 < 5 μm) with sharp edges. Samples exceeding MEL are classified as high-risk category which needs special attention for taking preventive and protective measure like use of personal protective equipments, job rotation and reduction in dust generation through engineering control using appropriate technology of dust suppression and dust extraction as per their applicability. The study also suggests presence of kaolinite and asbestos along with quartz which make the dust more harmful in nature necessitating further investigation and careful control measures.  相似文献   
4.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号