首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地质学   1篇
海洋学   2篇
自然地理   1篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A climatology of the stratosphere is determined from a 20-year integration with the stratospheric version of the Atmospheric General Circulation Model LMDz. The model has an upper boundary at near 65 km, uses a Doppler spread non-orographic gravity waves drag parameterization and a subgrid-scale orography parameterization. It also has a Rayleigh damping layer for resolved waves only (not the zonal mean flow) over the top 5 km. This paper describes the basic features of the model and some aspects of its radiative-dynamical climatology. Standard first order diagnostics are presented but some emphasis is given to the model’s ability to reproduce the low frequency variability of the stratosphere in the winter northern hemisphere. In this model, the stratospheric variability is dominated at each altitudes by patterns which have some similarities with the arctic oscillation (AO). For those patterns, the signal sometimes descends from the stratosphere to the troposphere. In an experiment where the parameterized orographic gravity waves that reach the stratosphere are exaggerated, the model stratosphere in the NH presents much less variability. Although the stratospheric variability is still dominated by patterns that resemble to the AO, the downward influence of the stratosphere along these patterns is near entirely lost. In the same time, the persistence of the surface AO decreases, which is consistent with the picture that this persistence is linked to the descent of the AO signal from the stratosphere to the troposphere. A comparison between the stratospheric version of the model, and its routinely used tropospheric version is also done. It shows that the introduction of the stratosphere in a model that already has a realistic AO persistence can lead to overestimate the actual influence of the stratospheric dynamics onto the surface AO. Although this result is certainly model dependent, it suggests that the introduction of the stratosphere in a GCM also call for a new adjustment of the model parameters that affect the tropospheric variability.  相似文献   
2.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   
3.
Phu Le Vo 《GeoJournal》2007,70(1):75-89
The management of water resources is an unfinished effort of the international community. Rapid urbanization has transcended the management capacity of governments in developing countries. Since the renovation policy launched in 1986, Ho Chi Minh City, Vietnam, has experienced the fastest urbanization and industrialization process. This has placed severe constraints on the use of water resources and management capacity of the local government. The abstraction of groundwater has exceeded the limiting volume (520,000 m3/day) and the annual drawdown of water table is 2–3 m. In addition, the quality of urban water bodies is increasingly exacerbated by a huge volume of untreated industrial and domestic wastewater. These are hampering water demand, use and the capacity of the municipal authority in managing water resources. The purpose of this paper is to analyze the impact of urbanization on water resources. Current issues and challenges in the management practices of water resources are discussed. It will propose a new paradigm of water management in Ho Chi Minh City.  相似文献   
4.
The problem of unsteady, laminar flow past a circular cylinder which starts translating and oscillating impulsively from rest in a viscous fluid is numerically investigated at a Reynolds number of R = 103. The flow is incompressible and two-dimensional, and the cylinder oscillations are harmonic. The transverse oscillations are only allowed when the maximum oscillatory-to-translational velocity ratio is 0.5. The investigation is based on an implicit finite difference scheme for integrating the unsteady Navier-Stokes equations together with the mass-conservation equation in their vorticity stream function formulation. A non-inertial coordinate transformation is used so that the grid mesh remains fixed relative to the accelerating cylinder. Present calculations are performed within the range of sufficiently large oscillation amplitude to induce separation. The time variation of the in-line and transverse force coefficients are presented. The study also focuses on the laminar asymmetric flow structure in the near-wake region. In this flow regime, it is found that there is alternate shedding of vortices from either side of the cylinder over an oscillation cycle (as predicted experimentally); this is the classical mode of vortex shedding leading to formation of the Kármán street.  相似文献   
5.
The unsteady flow past a circular cylinder which starts translating and transversely oscillating from rest in a viscous fluid is investigated at a Reynolds numbers of R=103 and at a Strouhal number of π/4 and for the maximum oscillatory to translational velocity ratios between 0.1 and 1.0. This study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations. The object of the study is to examine the effect of increase of velocity ratio on the near-wake structure as well as the hydrodynamic forces acting on the cylinder. For all velocity rates a periodic structure of vortex evaluation and shedding develops which is repeated exactly as time advances. Vortex dynamics close behind the body are affected by changing acceleration of the cylinder and a changeover from one mode to a different mode of vortex formation is observed with increase in velocity ratio. A comparison of the present results with the impulsively started translating case has been included to illustrate the effect of velocity ratio on drag at small values of velocity ratio.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号