首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   5篇
天文学   4篇
自然地理   1篇
  2017年   2篇
  2014年   2篇
  2013年   4篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.

Potential changes in future climate in the Texas Plains region were investigated in the context of agriculture by analyzing three climate model projections under the A2 climate scenario (medium–high emission scenario). Spatially downscaled historic (1971–2000) and future (2041–2070) climate datasets (rainfall and temperature) were downloaded from the North American Regional Climate Change Assessment Program (NARCCAP). Climate variables predicted by three regional climate models (RCMs) namely the Regional Climate Model Version3–Geophysical Fluid Dynamics Laboratory (RCM3-GFDL), Regional Climate Model Version3–Third Generation Coupled Global Climate Model (RCM3-CGCM3), and Canadian Regional Climate Model–Community Climate System Model (CRCM-CCSM) were evaluated in this study. Gaussian and Gamma distribution mapping techniques were employed to remove the bias in temperature and rainfall data, respectively. Both the minimum and maximum temperatures across the study region in the future showed an upward trend, with the temperatures increasing in the range of 1.9 to 2.9 °C and 2.0 to 3.2 °C, respectively. All three climate models predicted a decline in rainfall within a range of 30 to 127 mm in majority of counties across the study region. In addition, they predicted an increase in the intensity of extreme rainfall events in the future. The frost-free season as predicted by the three models showed an increase by 2.6–3.4 weeks across the region, and the number of frost days declined by 17.9 to 30 %. Overall, these projections indicate considerable changes to the climate in the Texas Plains region in the future, and these changes could potentially impact agriculture in this region.

  相似文献   
2.
Rainfall-induced landslides on steep slopes are a common feature in much of Italy’s mountain areas covered by shallow-pyroclastic deposits. Generally, these deposits are unsaturated and have a slope angle higher than 40°–50°; hence their stability is due to the positive effect of matric suction on soil shear strength. During rainfall, rainwater infiltration causes a decrease in suction, which in turn causes changes in soil mechanical and hydraulic properties, leading towards an instability process. However, the response of pyroclastic soil slopes to rainwater infiltration is not fully understood. The aim of this study is to link slope instability to the infiltration process on the basis of advanced geotechnical characterization, in situ monitoring and numerical analysis calibrated through a back-analysis of well-instrumented flume tests.  相似文献   
3.
We present well-sampled uvby light curves, supplemented by a few β filter measurements, of the Algol binary VV UMa. The light curves are analysed using two different codes to derive the orbital and absolute stellar parameters of this binary. We find reasonably good fits to the light curves and determine the stellar effective temperatures T eff,1≃9000–9600 K , and T eff,2≃5300–5600 K with a mass ratio q ≃0.35 . From the light-curve fits we discard the possibility of an anomalous gravity-darkening exponent for the secondary star of this system, as previously suggested.
We find evidence of short-term, small-amplitude variations in the brightness of the system. Two periodicities of about 1.10 and 0.51 h seem to be present in the data for at least two different nights, even within the secondary eclipse. This suggests that VV UMa may be a new Algol binary with a low-amplitude variable primary star, but new data collected during longer observing runs are necessary to confirm the pulsating nature of the brightness variations.  相似文献   
4.
In the present paper we study the causal structure of a topological black hole presented by Mann R.B. (in J. High Energy Phys. 06:075, 2009) by mean the standard Lagrangian procedure, which allow us analyze qualitatively the behavior of test particles using the effective potential. Then, the geodesic motion of massive and massless particles is obtained analytically. We find that confined orbits are forbidden on this spacetime, however radial photons can escape to infinity in an infinite proper time but in a finite coordinate time, this correspond to an interesting and novel result.  相似文献   
5.
Abstract

In determining the possible influence of climate change, it is important to understand the temporal and spatial variability in streamflow response for diverse climate zones. Thus, the aim of this study was to determine the presence of changes in annual maximum peak flow for two climate zones in Chile over the past few decades. A general analysis, a flood frequency analysis and a trend analysis were used to study such changes between 1975 and 2008 for a semi-arid (29°S–32°S) and a temperate (36°S–38°S) climatic zone. The historic annual maxima, minima and mean flows, as well as decadal mean peak flow, were compared over the period of record. The Gumbel distribution was selected to compare the 30-year flood values of two ±15-year intervals, which showed that streamflow decreased by an average of 19.5% in the semi-arid stations and increased by an average of 22.6% in the temperate stations. The Mann-Kendall test was used to investigate the temporal changes in streamflows, with negative trends being observed in 87% of the stations analysed in the semi-arid zone, and positive trends in 57% of those analysed in the temperate zone. These differences in streamflow response between climate zones could be related to recent documented increases in altitude of the zero-degree isotherm in the Andes Mountains of Chile, since most of the significant positive and negative changes were detected in first-order rivers located closer to this mountain range.

Editor D. Koutsoyiannis; Associate editor H. Lins

Citation Pizarro, R., Vera, M., Valdés, R., Helwig, B., and Olivares, C., 2013. Multi-decadal variations in annual maximum peak flows in semi-arid and temperate regions of Chile. Hydrological Sciences Journal, 59 (2), 300–311.  相似文献   
6.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   
7.
Campania Region (Italy), one of the most densely populated areas in Europe, is probably the one with the highest risk of landslide. A large part of the region is covered by unsaturated cohesionless pyroclastic deposits subjected to rainfall-induced landslides. According to experience, these can display different features and magnitude. The most catastrophic landslides are liquefied debris flows which periodically occur on steep slopes, causing death and destruction in areas located downslope. Therefore, zoning of those areas which can be the source of liquefied debris flow is necessary. The paper reports some useful elements for zoning based on infinite slope analysis, accounting for the results of recent research on the mechanics of rainfall-induced landslides in pyroclastic soils.  相似文献   
8.
ABSTRACT

Precipitation is the most critical climatic element that directly affects the availability of water resources. The objective of this study was to describe and discuss spatio-temporal patterns of annual precipitation, its aggressiveness, and its concentration along the southwest coast of South America (36°–49°S) from 1930 to 2006. An annual and multi-decadal analysis was applied to 107 sampling stations distributed throughout this region, using the Mann-Kendall test (MK), and the Sampling Uncertainty Analysis (SUA) coupled with Gumbel probability density function (SUA-Gumbel). The analysis revealed positive but not significant trends in annual precipitation and aggressiveness for the region between 36° and 44°S, at least during the last 50 years of the analysed period. However, a significant decrease in annual precipitation and aggressiveness was observed between 44° and 49°S during the same period. The annual concentration of precipitation became slightly more seasonal in the last 50 years within the entire study area.  相似文献   
9.
Summary Experience shows that slope movements occurring in similar geomorphogical contexts may display very different styles and magnitude. This has important practical implications, since the risk associated with a landslide depends just on its magnitude. The paper discusses the mechanics of slope failure in coarse-grained and in fine-grained soils with particular reference to flow-like landslides, showing that even small details can affect their movement pattern. Author’s address: Prof. Luciano Picarelli, Seconda Università di Napoli, Aversa, Italy  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号