首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   2篇
地球物理   1篇
  2022年   1篇
  2014年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A. Bun  K. Hamal  M. Jonas  M. Lesiv 《Climatic change》2010,103(1-2):215-225
The focus of this study is on the preparatory detection of uncertain greenhouse gas (GHG) emission changes (also termed emission signals) under the Kyoto Protocol. Preparatory signal detection is a measure that should be taken prior to/during negotiation of the Protocol. It allows the ranking of countries under the Protocol according to their realized versus their agreed emission changes and in terms of both certainty and credibility. Controlling GHGs is affected by uncertainty and may be costly. Thus, knowing whether each nation is doing its part is in the public interest. At present, however, countries to the United Nations Framework Convention on Climate Change (UNFCCC) are obliged to include in the reporting of their annual inventories direct or alternative estimates of the uncertainty associated with these, consistent with the Intergovernmental Panel on Climate Change’s (IPCC) good practice guidance reports. As a consequence, inventory uncertainty is monitored, but not regulated, under the Kyoto Protocol. Although uncertainties are becoming increasingly available, monitored emissions and uncertainties are still dealt with separately. In our study we analyze estimates of both emission changes and uncertainties to advance the evaluation of countries and their performance under the Protocol. Our analysis allows supply and demand of emissions credits to be examined in consideration of uncertainty. For the purpose of our exercise, we make use of the Undershooting and Verification Time concept described by Jonas et al. (Clim Change doi:10.1007/s10584-010-9914-6, 2010).  相似文献   
2.
Total uncertainty in greenhouse gas (GHG) emissions changes over time due to “learning” and structural changes in GHG emissions. Understanding the uncertainty in GHG emissions over time is very important to better communicate uncertainty and to improve the setting of emission targets in the future. This is a diagnostic study divided into two parts. The first part analyses the historical change in the total uncertainty of CO2 emissions from stationary sources that the member states estimate annually in their national inventory reports. The second part presents examples of changes in total uncertainty due to structural changes in GHG emissions considering the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) emissions scenarios that are consistent with the EU’s “20-20-20” targets. The estimates of total uncertainty for the year 2020 are made under assumptions that relative uncertainties of GHG emissions by sector do not change in time, and with possible future uncertainty reductions for non-CO2 emissions, which are characterized by high relative uncertainty. This diagnostic exercise shows that a driving factor of change in total uncertainty is increased knowledge of inventory processes in the past and prospective future. However, for individual countries and longer periods, structural changes in emissions could significantly influence the total uncertainty in relative terms.  相似文献   
3.
Mountain regions are an important regulator in the global water cycle through their disproportionate water contribution. Often referred to as the “Water Towers of the World”, mountains contribute 40%–60% of the world's annual surface flow. Shade is a common feature in mountains, where complex terrain cycles land surfaces in and out of shadows over daily and seasonal scales, which can impact water use. This study investigated the turbulent water and carbon dioxide (CO2) fluxes during the snow-free period in a subalpine wetland in the Canadian Rocky Mountains, from 7 June to 10 September 2018. Shading had a significant and substantial effect on water and CO2 fluxes at our site. When considering data from the entire study period, each hourly increase of shade per day reduced evapotranspiration (ET) and gross primary production (GPP) by 0.42 mm and 0.77 g C m?2, equivalent to 17% and 15% per day, respectively. However, the variability in shading changed throughout the study, it was stable to start and increased towards the end. Only during the peak growing season, the site experienced days with both stable and increasing shade. During this time, we found that shade, caused by the local complex terrain, reduced ET and potentially increased GPP, likely due to enhanced diffuse radiation. The overall result was greater water use efficiency during periods of increased shading in the peak growing season. These findings suggest that shaded subalpine wetlands can store large volumes of water for late season runoff and are productive through short growing seasons.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号