首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   33篇
地球物理   38篇
地质学   60篇
海洋学   19篇
天文学   53篇
自然地理   11篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   13篇
  2012年   7篇
  2011年   14篇
  2010年   11篇
  2009年   9篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   14篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有217条查询结果,搜索用时 78 毫秒
1.
A major difficulty in remote sensing is handling the many data from sensors aboard aircraft and satellites. In this paper we identify an optimal procedure for sampling remotely sensed data before their storage or on their retrieval. The procedure depends on spatial correlation in the scene and uses kriging to estimate values that have been lost. An example in which data from an airborne multispectral scanner could be diminished to only about one tenth without serious loss of precision illustrates the method.  相似文献   
2.
Did Congressional influence play a role in the distribution of federal outlays between FY81 and FY86? This study hypothesizes that states with majority party House and Senate delegations and with seniority in the delegations experienced the largest increases in federal expenditures. These two hypotheses are tested for fifteen divisions of federal outlays using a stepwise regression model. The results provide only very modest evidence of any systematic Congressional influence over changes in the distribution of federal outlays during the study period.  相似文献   
3.
With a multi-proxy approach, an attempt was made to constrain productivity and bottom-water redox conditions and their effects on the phosphorus accumulation rate at the Mohammed Plage section on the Tarfaya coast, Morocco, during the Cenomanian-Turonian Anoxic Event (OAE 2). A distinct δ13Corg isotope excursion of +2.5‰ occurs close to the top of the section. The unusually abrupt shift of the isotope excursion and disappearance of several planktonic foraminiferal species (e.g. Rotalipora cushmani and Rotalipora greenhornensis) in this level suggests a hiatus of between 40–60 kyrs at the excursion onset. Nevertheless, it was possible to determine both the long-term environmental history as well as the processes that took place immediately prior to and during OAE 2. TOC% values increase gradually from the base of the section to the top (from 2.5% to 10%). This is interpreted as the consequence of a long-term eustatic sea-level rise and subsidence causing the encroachment of less oxic waters into the Tarfaya Basin. Similarly a reduction in the mineralogically constructed ‘detrital index’ can be explained by the decrease in the continental flux of terrigenous material due to a relative sea-level rise. A speciation of phosphorus in the upper part of the section, which spans the start and mid-stages of OAE 2, shows overall higher abundances of Preactive mass accumulation rates before the isotope excursion onset and lower values during the plateau. Due to the probable short hiatus, the onset of the decrease in phosphorus content relative to the isotope excursion is uncertain, although the excursion plateau already contains lower concentrations. The Corg/Ptotal and V/Al ratios suggest that this reduction was mostly likely caused by a decrease in the available bottom oxygen content (probably as a result of higher productivity) and a corresponding fall in the phosphorus retention ability of the sediment. Productivity appears to have remained high during the isotope plateau possibly due to a combination of ocean-surface fertilisation via increased aridity (increased K/Al and Ti/Al ratios) and/or higher dissolved inorganic phosphorus content in the water column as a result of the decrease in sediment P retention. The evidence for decreased P-burial has been observed in many other palaeoenvironments during OAE 2. Tarfaya's unique upwelling paleosituation provides strong evidence that the nutrient recycling was a global phenomenon and therefore a critical factor in starting and sustaining OAE 2.  相似文献   
4.
An aluminium smelter on the west coast of Scotland discharges an aqueous effluent containing polycyclic aromatic hydrocarbons (PAHs) at the head of Loch Leven. The loch also supports two mussel (Mytilus edulis) farms. Data are presented on burdens of PAHs in the soft tissues of mussels and the effect of these contaminants on glutathione S-transferase (GST) activity in mussel hepatopancreas. GST activity is shown to be correlated with total PAH burden and also with the concentrations of certain individual PAHs. These field data show that high molecular weight PAHs are closely correlated to GST activity, whereas low molecular weight PAHs are not. This suggests that 5- and 6-ring PAHs have a more pronounced role than 2- to 4-ring compounds in inducing GST activity in mussels from Loch Leven. It is proposed that it may be more appropriate to link GST activity with 5- and 6-ring compounds only, rather than with the total PAH burden.  相似文献   
5.
Summary Using large-scale circulation statistics from the Pacific Ocean basin, predictability of the coupled ocean-atmosphere system on interannual time scales is found both to be limited in extent and to possess a strong annual cycle. Irrespective of when lagged correlations are commenced, correlations decrease rapidly through the boreal spring, indicating an inherent predictability limitation for large scale coupled oceanicatmospheric processes such as El Niño. Long term prediction experiments using numerical coupled-models show that the models are excellent facsimiles of the real system. They, too, encounter the predictability barrier and exhibit a substantial decrease in observation-prediction correlation across the boreal spring. Thus, a predictive system based solely on the interactive physics of the Pacific Basin appears limited to a maximum of less than one year and a minimum of only one or two months.Two hypotheses are made to explain the existence of the predictability barrier. First, it is argued that the tropical coupled system is at its frailest state during the boreal spring and that the signal-to-noise ratio is weakest. In such a system, maximum random error growth may occur as the atmosphere and the ocean become temporally detached and wander onto different climate trajectories. A series of 144 preliminary Monte Carlo experiments were conducted with a coupled ocean-atmosphere model to test the hypothesis. Irrespective of when the experiments were commenced, error growth was maximized at the same time of the year. The second hypothesis suggests that the near-equatorial circulation is perturbed at the time of its weakest state by external influences such as the monsoon and that the climate wanderings are nudged deterministically. There is observational and theoretical evidence to support the hypothesis. Observations suggest that anomalous monsoons impart basin-wide coherent alterations of the wind stress field in the Pacific Ocean. Experiments with a coupled ocean-atmosphere model show that the period of an ENSO event is altered substantially by an anomalous monsoon. Given that there appear to be precursors to anomalous monsoons, it is suggested that there may be ways to avoid the predictability barrier and thus extend prediction of the entire system.Finally, noting that the two hypotheses are not mutually exclusive, they are combined to form a unified theory. As the asymmetric monsoonal and the symmetric near-equatorial heating are in approximate quadrature, it is argued that the monsoons influence the Walker circulation during the boreal spring. However, during the boreal fall and early winter the near-equatorial heating variability dominates the winter monsoon.With 18 Figures  相似文献   
6.
Fractional crystallization of peraluminous F- and H2O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions.

We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.  相似文献   

7.
8.
The exsolution of volatile phases from silicate magmas controls physical and chemical magma properties and influences large-scale geologic phenomena and processes having major societal and economic implications including the release of climate-altering gases to the atmosphere, the explosivity of volcanic eruptions, hydrothermal alteration, and the generation of magmatic–hydrothermal mineralization. These volatile phases exsolve from a wide variety of magmas and cover a very broad spectrum of compositions.

The transition from the orthomagmatic to the hydrothermal stages has important bearing on these fundamentally important geologic phenomena, and this report summarizes the published results of a dozen scientific investigations on the magmatic–hydrothermal transition as applied to volcanic eruption and magmatic–hydrothermal mineralization. These studies involve a variety of analytical and experimental methodologies, and many focus on fluid and melt inclusions from mineralized magmatic systems. A primary goal of each study is to better understand the role of magmatic volatiles and the importance of the magmatic–hydrothermal transition on these geologic processes.  相似文献   

9.
Summary Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2–3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean.Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline.The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of aconvective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.  相似文献   
10.
The Bishop Tuff, a well known Quaternary high-silica rhyolite in east-central California, is widely considered the type example of a vertically and monotonically zoned pyroclastic deposit that represents zoning in the source magma reservoir, inverted during the process of pyroclastic emplacement. However, the deposit of plinian pumice, which forms the base of the Bishop Tuff and represents the initial 10% or so of all magma erupted during the event that produced the Bishop Tuff, contains features at odds with monotonie zoning for the reservoir. Relative to overlying ignimbrite, the plinian deposit contains a reversal in trace-element zoning. Moreover, the 87Sr/86Sr is significantly higher than that in overlying ignimbrite (about 0.7084 vs 0.7064), and melt inclusions trapped in quartz phenocrysts exhibit notable variability of trace-element concentrations, even within a single host crystal (e.g., U: 10.77 to 8.91 ppm).These data have been previously interpreted as due to processes of chemical fractionation and evolution operating within a magma system closed to chemical interactions with its roof rocks. For example, the reversal in trace-element zoning has been explained by the first-erupted magma being erupted from somewhat below the top of a monotonically zoned reservoir. However, we submit that the reversed zoning and other above-noted features can be explained equally well as consequences of minor assimilation of roof rocks into a magma reservoir that was erupted from the top down.The basal part of the Bishop Tuff exhibits extreme concentrations and depletions of trace elements, relative to the average composition of crustal rocks. For example, the upward decrease of Sr in the Bishop magma reservoir (downward decrease in the ignimbrite) results in concentrations as low as 2–4 ppm. Because of the attendant ‘chemical leverage’, assimilation of < 1 wt.% of Sierra Nevada batholith rocks typical of the area could readily reverse an ‘uncontaminated’ Sr (and other trace elements) trend of zoning and could also substantially raise 87Sr/86Sr. Small-scale trace-element variability in the uppermost part of the Bishop magma reservoir, as recorded by the above-mentioned melt inclusions, may simply reflect melt heterogeneity produced by the process of assimilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号