首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   4篇
  2008年   3篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
We examine the meteorological conditions favourable for new particle formation as a contribution to clarifying the responsible processes. Synoptic weather maps and satellite images over Southern Finland for 2003–2005 were examined, focusing mainly on air mass types, atmospheric frontal passages, and cloudiness. Arctic air masses are most favourable for new aerosol particle formation in the boreal forest. New particle formation tends to occur on days after passage of a cold front and on days without frontal passages. Cloudiness, often associated with frontal passages, decreases the amount of solar radiation, reducing the growth of new particles. When cloud cover exceeds 3–4 octas, particle formation proceeds at a slower rate or does not occur at all. During 2003–2005, the conditions that favour particle formation at Hyytiälä (Arctic air mass, post-cold-frontal passage or no frontal passage and cloudiness less than 3–4 octas) occur on 198 d. On 105 (57%) of those days, new particle formation occurred, indicating that these meteorological conditions alone can favour, but are not sufficient for, new particle formation and growth. In contrast, 53 d (28%) were classified as undefined days; 30 d (15%) were non-event days, where no evidence of increasing particle concentration and growth has been noticed.  相似文献   
2.
3.
4.
Long-term measurements of fine particle number-size distributions were carried out over 9.5 yr (May 1997–December 2006), in the urban background atmosphere of Helsinki. The total number of days was 3528 with about 91.9% valid data. A new particle formation event (NPF) is defined if a distinct nucleation mode of aerosol particles is observed below 25 nm for several hours, and it shows a growth pattern. We observed 185 NPF events, 111 d were clear non-events and most of the days (around 83.5%) were undefined. The observed events were regional because they were observed at Hyytiälä (250 km north of Helsinki). The events occurred most frequently during spring and autumn. The observed formation rate was maximum during the spring and summer (monthly median 2.87 cm−3 s−1) and the modal growth rate was maximum during late summer and Autumn (monthly median 6.55 nm h−1). The events were observed around noon, and the growth pattern often continued on the following day. The observation of weak NPF events was hindered due to pre-existing particles from both local sources. It is clear that regional NPF events have a clear influence on the dynamic behaviour of aerosol particles in the urban atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号