首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   5篇
地球物理   1篇
  2021年   1篇
  2020年   2篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
Climate Dynamics - We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation (ENSO) using both satellite precipitation...  相似文献   
2.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
3.
Three different resolution (50, 12, and 1.5 km) regional climate model simulations are compared in terms of their ability to simulate moderate and high daily precipitation events over the southern United Kingdom. The convection-permitting 1.5-km simulation is carried out without convective parametrisation. As in previous studies, increasing resolution (especially from 50 to 12 km) is found to improve the representation of orographic precipitation. The 50-km simulation underestimates mean precipitation over the mountainous region of Wales, and event intensity tends to be too weak; this bias is reduced in both the 12- and 1.5-km simulations for both summer and winter. In south–east England lowlands where summer extremes are mostly convective, increasing resolution does not necessary lead to an improvement in the simulation. For the 12-km simulation, simulated daily extreme events are overly intense. Even though the average intensity of summer daily extremes is improved in the 1.5-km simulation, this simulation has a poorer mean bias with too many events exceeding high thresholds. Spatial density and clustering of summer extremes in south–east England are poorly simulated in both the 12- and 1.5-km simulations. In general, we have not found any clear evidence to show that the 1.5-km simulation is superior to the 12-km simulation, or vice versa at the daily level.  相似文献   
4.
We isolate the contribution of warming, other large-scale changes and soil moisture decline and feedbacks in driving future projected changes in daily precipitation across Europe. Our confidence in each of these mechanisms differs, so this analysis then allows us to determine an overall confidence (or reliability) in the projected changes. In winter, increases in extreme precipitation over Europe as a whole are judged to be reliable, dominated by increased atmospheric moisture with warming. At scales less than about 2,000 km changing circulation patterns could enhance or offset this increase. Additionally, over the Scandinavian mountains warming-induced circulation changes do offset the effect of increased moisture and the overall change is unreliable. In summer, increases in extreme precipitation over northern Scandinavia and decreases over the Mediterranean are reliable in the absence of considerable circulation change. Over central Europe, an increase in the proportion of summer rainfall falling as extreme events is reliable.  相似文献   
5.

This paper presents the first multi-model ensemble of 10-year, “convection-permitting” kilometer-scale regional climate model (RCM) scenario simulations downscaled from selected CMIP5 GCM projections for historical and end of century time slices. The technique is to first downscale the CMIP5 GCM projections to an intermediate 12–15 km resolution grid using RCMs, and then use these fields to downscale further to the kilometer scale. The aim of the paper is to provide an overview of the representation of the precipitation characteristics and their projected changes over the greater Alpine domain within a Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study and the European Climate Prediction system project, tasked with investigating convective processes at the kilometer scale. An ensemble of 12 simulations performed by different research groups around Europe is analyzed. The simulations are evaluated through comparison with high resolution observations while the complementary ensemble of 12 km resolution driving models is used as a benchmark to evaluate the added value of the convection-permitting ensemble. The results show that the kilometer-scale ensemble is able to improve the representation of fine scale details of mean daily, wet-day/hour frequency, wet-day/hour intensity and heavy precipitation on a seasonal scale, reducing uncertainty over some regions. It also improves the representation of the summer diurnal cycle, showing more realistic onset and peak of convection. The kilometer-scale ensemble refines and enhances the projected patterns of change from the coarser resolution simulations and even modifies the sign of the precipitation intensity change and heavy precipitation over some regions. The convection permitting simulations also show larger changes for all indices over the diurnal cycle, also suggesting a change in the duration of convection over some regions. A larger positive change of frequency of heavy to severe precipitation is found. The results are encouraging towards the use of convection-permitting model ensembles to produce robust assessments of the local impacts of future climate change.

  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号