首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   10篇
地球物理   51篇
地质学   57篇
海洋学   18篇
天文学   31篇
自然地理   7篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   10篇
  2015年   4篇
  2014年   13篇
  2013年   14篇
  2012年   6篇
  2011年   14篇
  2010年   8篇
  2009年   9篇
  2008年   18篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   3篇
  1983年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有175条查询结果,搜索用时 390 毫秒
1.
The rotation of the surface layer of the Sun is found to have been accelerated secularly from the sunspot data of 1943 to 1986. To represent the overall state of rotation of the differentially rotating Sun, we define an indexM, by integrating the angular momentum density over the whole surface of the Sun, and call it the angular momentum layer density. The indexM increased monotonically or secularly from 1943 to 1986. This period corresponds to solar cycles 18, 19, 20, and 21. The monotonic increase ofM indicates that a net angular momentum must have steadily been coming from the layer down below the surface. The differential rotation latitudinal dependence profile did not change much from cycle 18 to cycle 20, but at cycle 21 the degree of equatorial acceleration dropped. This aspect is discussed in the context of the 55-year grand cycle. Cycle 21 is the start of grand cycle VI. The latitudinal dependence is less steep at cycle 21. The time scale of secular change of the indexM reflects the time scale of change of linkage of the surface and the deep layer in form of the angular momentum transfer, and that the time scale of the profile change of the differential rotation reflects the time scale of the angular momentum transfer within the surface layer.  相似文献   
2.
The phase relation of the poloidal and toroidal components of the solar-cycle general magnetic fields, which propagate along isorotation surfaces as dynamo waves, is investigated to infer the structure of the differential rotation and the direction of the regeneration action of the dynamo processes responsible for the solar cycle. It is shown that, from the phase relation alone, (i) the sign of the radial gradient of the differential rotation (/r) can be determined in the case that the radial gradient dominates the differential rotation, and (ii) the direction of the regeneration action can be determined in the case that the latitudinal gradient (/) dominates the differential rotation. Examining the observed poloidal and toroidal fields, it is concluded that (i) the / should dominate the differential rotation, and (ii) the determined sign of the regeneration factor (positive [negative] in the northern [southern] hemisphere) describing the direction of the regeneration action requires that the surface magnetic fields should originate from the upper part of the convection zone according to the model of the solar cycle driven by the dynamo action of the global convection.  相似文献   
3.
Horie  Kei  Maki  Norio  Kohiyama  Masayuki  Lu  Hengjian  Tanaka  Satoshi  Hashitera  Shin  Shigekawa  Kishie  Hayashi  Haruo 《Natural Hazards》2003,29(3):341-370
Rebuilding of victims' livelihoods was a crucial issue in the restoration process in the1995 Hanshin-Awaji Earthquake Disaster. Housing damage assessment influencedmost of the rebuilding of the livelihood in the long term, because the Victim Certificatesissued by the local governments based on the results of the Housing damage assessmentwas required to receive most of the individual assistance measures. In the process ofHousing damage assessment, many complex problems arose, leading to extensivework on the part of the disaster responders. Consequently, a considerable number ofvictims were dissatisfied with the assessment and applied for a resurvey. Due to a floodof requests for resurvey, disaster responders had to work on damage assessment, leavingrelief activities aside.In order to facilitate Housing damage assessment, this paper discusses thefollowing five points: (1) the processes and the problems of assessments performedin the Hanshin-Awaji Earthquake Disaster, (2) the changes in the nature of informationneeded by the victims, (3) the improvements over the present damage assessment, (4)the housing situation in Japan, and (5) the international situation on damage assessment.It is obvious from the results that a poor damage assessment system and the size ofthe disaster produced a very large work load. Differences in appreciation among theinvestigators also contributed to unfair assessments and led to the victims beingincreasingly dissatisfied by the survey results. Finally, a design concept for acomprehensive damage assessment system, which has been derived from theabove five points, is proposed for post-disaster management.  相似文献   
4.
5.
Marine controlled source electromagnetic(CSEM)data have been utilized in the past decade during petroleum exploration of the Barents Shelf,particularly for de-risking the highly porous sandstone reservoirs of the Upper Triassic to Middle Jurassic Realgrunnen Subgroup.In this contribution we compare the resistivity response from CSEM data to resistivity from wireline logs in both water-and hydrocarbon-bearing wells.We show that there is a very good match between these types of data,particularly when reservoirs are shallow.CSEM data,however,only provide information on the subsurface resistivity.Careful,geology-driven interpretation of CSEM data is required to maximize the impact on exploration success.This is particularly important when quantifying the relative re-sistivity contribution of high-saturation hydrocarbon-bearing sandstone and that of the overlying cap rock.In the presented case the cap rock comprises predominantly organic rich Upper Jurassic-Early Cretaceous shales of the Hekkingen Formation(i.e.a regional source rock).The resistivity response of the reservoir and its cap rock become merged in CSEM data due to the transverse resistance equivalence principle.As a result of this,it is imperative to understand both the relative contributions from reservoir and cap rock,and the geological sig-nificance of any lateral resistivity variation in each of the units.In this contribution,we quantify the resistivity of organic rich mudstone,i.e.source rock,and reservoir sandstones,using 131 exploration boreholes from the Barents Shelf.The highest resistivity(>10,000 Ωm)is evident in the hydrocarbon-bearing Realgrunnen Subgroup which is reported from 48 boreholes,43 of which are used for this study.Pay zone resistivity is primarily controlled by reservoir quality(i.e.porosity and shale fraction)and fluid phase(i.e.gas,oil and water saturation).In the investigated wells,the shale dominated Hekkingen Formation exhibits enhanced resistivity compared to the background(i.e.the underlying and overlying stratigraphy),though rarely exceeds 20Ωm.Marine mudstones typically show good correlation between measured organic richness and resistivity/sonic velocity log signatures.We conclude that the resistivity contribution to the CSEM response from hydrocarbon-bearing sandstones out-weighs that of the organic rich cap rocks.  相似文献   
6.
7.
The relation between the systematic time variations of the solar differential rotation at middle latitudes and the asymmetry of global distribution of the solar activity is discussed in connection with the study of the maintenance of the solar differential rotation. The systematic variations at middle latitudes are inferred from a peculiar correlation in the time variations of the solar differential rotation which is shown in this paper to be implied in the data of Howard and Harvey (1970) of spectroscopic measurements of rotational velocities. If we adopt the working hypothesis of the solar equatorial acceleration maintained by the angular momentum transport due to the very large scale convection, the two phenomena are related through the concurrent presence of the neighboring modes with the presumed dominant mode of the very large scale convection.  相似文献   
8.
The concept of the solar general magnetic field is extended from that of the polar fields to the concept of any axisymmetric fields of the whole Sun. The poloidal and toroidal general magnetic fields are defined and diagrams of their evolutionary patterns are drawn using the Mount Wilson magnetic synoptic chart data of Carrington rotation numbers from 1417 to 1620 covering approximately half of cycle 19 and cycle 20. After averaging over many rotations long-term regularities appear in the patterns. The diagrams of the patterns are compared with the Butterfly Diagram of sunspots of the same period. The diagram of the poloidal field shows that the Sun behaves like a magnetic quadrupole, each hemisphere having two branches of opposite polarities with mirror images on the other hemisphere. This was predicted by a solar cycle model driven by the dynamo action of the global convection by Yoshimura and could serve as a verification of the model. The diagram of the toriodal field is similar to the Butterfly Diagram of sunspots. The slight differences which do exist between the two diagrams seems to show that the fields responsible for the two may originate from different zones of the Sun. Common or different characteristics of the three diagrams are examined in terms of dynamical structure of the convection zone referring to the theoretical model of the solar cycle driven by the dynamo action of the global convection.  相似文献   
9.
Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85–108 GPa and 1800–2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106–123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.  相似文献   
10.
Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)↔(Al, Cr) at low pressure to (Si, Mg)↔(Al, Al) and (Mg, Mg)↔(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution. Received: March 6, 1997 / Revised, accepted: March 12, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号