首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   4篇
地球物理   7篇
地质学   4篇
天文学   2篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
In this paper, we study extended Chaplygin gas as a candidate for inflation and predict the values of gas parameters for a physically viable cosmological model. The extended Chaplygin gas which proposed recently has n+2 free parameters. When n=1, there are three parameters which are corresponding to modified Chaplygin gas. Here we focus on the second order equation of state where n=2, so we have generally four free parameters. Under some assumptions, we reduced free parameters of the model to the only one parameter and try to fix it using the dimensionless age parameter. Also we check validity of our calculations using recent observations of BICEP2.  相似文献   
3.
The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969–2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from ?26% in 1976 to ?60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of ?60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as ?60% during 1979 at the Satna station. Extreme dry events (z score <?2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.  相似文献   
4.
Theoretical and Applied Climatology - Gridded precipitation products are becoming good alternative data sources for regions with limited weather gauging stations. In this study, four climate...  相似文献   
5.
Prior to hydrological assessment of climate change at catchment scale, an applied methodology is necessary to evaluate the performance of climate models available for a given catchment. This study presents a grid-based performance evaluation approach as well as an intercomparison framework to evaluate the uncertainty of climate models for rainfall reproduction. For this purpose, we used outputs of two general circulation models (GCMs), namely ECHAM5 and CCSM3, downscaled by a regional climate model (RCM), namely RegCM3, over ten small to mid-size catchments in Rize Province, Turkey. To this end, five rainfall-borne climatic statistics are computed from the outputs of ECHAM5-RegCM3 and CCSM3-RegCM3 combinations in order to compare with those of observations in the province for the reference period 1961–1990. Performance of each combination is tested by means of scatter diagram, bias, mean absolute bias, root mean squared error, and model performance index (MPI) measures. Our results indicated that ECHAM5-RegCM3 overestimates the total monthly rainfall observations whereas CCSM3-RegCM3 tends to underestimate. In terms of maximum monthly and annual maximum rainfall reproduction, ECHAM5-RegCM3 shows higher performance than CCSM3-RegCM3, particularly in the coastland areas. In contrast, CCSM3-RegCM3 outperforms ECHAM5-RegCM3 in reproducing the number of rainy days, especially in the inland areas. The results also revealed that if a GCM-RCM combination performs well for a portion (statistic) of a catchment, it is not necessarily appropriate for the other portions (statistics). Moreover, the MPI measure demonstrated the superiority of ECHAM5-RegCM3 to CCSM3-RegCM3 up to 33 % excelling for annual rainfall reproduction in Rize Province.  相似文献   
6.
Arabian Journal of Geosciences - This study was motivated by two main concerns including (a) prediction of the Persian Gulf Sea surface temperature (PGSST) anomalies using an autoregressive...  相似文献   
7.
Vein-stockwork magnesite in the Madenli area, sedimentary huntite-magnesite in the A?a??t?rtar area, and lacustrine hydromagnesite in the Salda Lake area are located in the Bey?ehir-Hoyran and Lycian nappe rocks around Isparta and Burdur, Southwest Anatolia. The aim of this study is to understand trace element contents and carbon-oxygen isotope ratios in different originated magnesite, magnesite bearing huntite, and hydromagnesite deposits. Also, the element contents and isotope ratios of the magnesite occurrences are to compare with each other and similar magnesite occurrences in Turkey and world. It is found that the Madenli magnesite occurrences in the ?arkikaraa?aç ophiolites, A?a??t?rtar magnesite bearing huntite deposits in the lacustrine rocks of the Miocene-Pliocene, and the Salda hydromagnesite deposits in lacustrine basin on the Ye?ilova ophiolites. The paragenesis contains a common carbonate mineral magnesite, less calcite, serpentine, smectite, dolomite, and talc in the Madenli magnesite occurrences, mostly huntite and locally magnesite, dolomite, calcite, illite, quartz, and smectite in the A?a??t?rtar huntite-magnesite occurrences, and only hydromagnesite mineral in the Salda Lake hydromagnesite occurrences. Vein and stockwork Madenli magnesite deposits were recognized by higher total iron oxide concentrations (mean 1.10 wt%) than sedimentary A?a??t?rtar magnesite bearing huntite (mean 0.13 wt%) and lacustrine Salda hydromagnesite (mean 0.22 wt%) deposits. It is suggested that high Fe content (up to 5%) in the magnesite associated with ultramafic rocks than those from sedimentary environments (≤1% Fe). Based on average Ni, Co, Ba, Sr, As and Zr contents in the magnesite deposits, average Ni (134.63 ppm) and Co (15.19 ppm) contents in the Madenli magnesite and Salda hydromagnesite (36.85 ppm for Ni, 3.15 ppm for Co) have higher values than A?a??t?rtar huntite + magnesite (7.67 ppm for Ni and 0.89 ppm for Co). Average Ni-Co contents of these deposits can have close values depending on ophiolite host rock. Average Ba values of the Madenli (108.09 ppm) and A?a??t?rtar (115.88 ppm) areas are higher than those of Salda hydromagnesite (13.15 ppm). Sediment-hosted A?a??t?rtar magnesite-huntite deposits have the highest Sr contents (mean 505.81 ppm) as reasonably different from ultrabasic rock-related Madenli magnesite (mean 38.76 ppm) and Salda hydromagnesite (mean 36.70 ppm). The highest Sr content of sedimentary A?a??t?rtar deposits reveals that Sr is related to carbonate rocks. As and Zr contents have the highest average values (As 52.76 ppm and Zr 9.67 ppm) in the A?a??t?rtar deposits different from Madenli magnesite (As 0.54 ppm and Zr 1.67 ppm) and Salda hydromagnesite (As 0.5 ppm and Zr 2.58 ppm) deposits. High As and Zr concentrations in the A?a??t?rtar magnesite-huntite deposits may come from volcanic rocks in near country rocks. The δ 13C (PDB) isotope values vary between ?10.1 and ?11.4‰ in the Madenli magnesite, 7.8 to 8.8‰ for huntite, 1.7 to 8.3‰ for huntite + magnesite and 4.0‰ for limestone + magnesite in the A?a??t?rtar huntite-magnesite deposits, and 4.4 to 4.9‰ for Salda Lake hydromagnesite. The sources of the CO2 are hydrothermal solutions, meteoric waters, groundwater dissolved carbon released from fresh water carbonates and marine limestone, soil CO2, and plant C3 in the Madenli magnesite, and may be deep seated metamorphic reactions in limestone and shales of rich in terms of organic matter. The sources of CO2 in A?a??t?rtar huntite and Salda hydromagnesite were meteoric water, groundwater dissolved inorganic carbon, fresh water carbonates, and marine limestone. The δ 18O (SMOW) isotope composition ranges from 26.8 to 28.1‰ in the Madenli magnesite, 30.4 to 32.4‰ for huntite and 29.8 to 35.5‰ for huntite + magnesite and 26.9‰ for limestone + magnesite in the A?a??t?rtar area, and 36.4 to 38.2‰ in the Salda Lake hydromagnesite. The Salda Lake hydromagnesite has heavier oxygen isotopic values than others. The sources of oxygen in the Madenli magnesite deposits are hydrothermal solutions, meteoric water, freshwater carbonates, and marine limestone, but the sources of oxygen of the A?a??t?rtar magnesite-huntite are meteoric water, fresh water carbonates, and marine limestone. The Salda Lake hydromagnesite has very high δ18O isotope values indicating a strong evaporitic environment. Magnesium (Mg+2) and silica are released by disintegration of very weathered-serpentinized ultrabasic rocks of all magnesite deposits and from partly dolomite and dolomitic limestone in the A?a??t?rtar magnesite bearing huntite deposits. In the A?a??t?rtar area, calcium (Ca+2) for huntite mineralization is provided by surrounding carbonate rocks. Based on isotopic data, host rocks, petrographic properties of the Madenli magnesite can be described as an ultramafic-associated hydrothermal vein mineralization corresponding to “Kraubath type” deposits, but A?a??t?rtar ve Salda Lake deposits are sedimentary mineralization (lacustrine/evaporitic) corresponding to “Bela Stena type” deposits. The estimated temperature using average δ18O isotope values is about 33.51 °C for Madenli magnesite, 48.33 °C for A?a??t?rtar huntite-magnesite, and 25 °C for Salda hydromagnesite. Based on isotope data, we can be say that the Madenli magnesite, A?a??t?rtar magnesite-huntite, and Salda hydromagnesite occur at low to moderate-low temperature water and alkaline (pH 8.5–10.5) under surface or near-surface conditions.  相似文献   
8.
9.
10.
In the present study, the trends in the reference evapotranspiration (ETO) estimated through the Penman‐Monteith method were investigated over the humid region of northeast (NE) India by using the Mann‐Kendall (MK) test after removing the effect of significant lag‐1 serial correlation from the time series of ETO by pre‐whitening. During the last 22 years, ETO has been found to decrease significantly at annual and seasonal time scales for 6 sites in NE India and NE India as a whole. The seasonal decreases in ETO have, however, been more significant in the pre‐monsoon season, indicating the presence of an element of a seasonal cycle. The decreases in ETO are mainly attributed to the net radiation and wind speed, which are also corroborated by the observed trends in these two parameters at almost all the times scales over most of the sites in NE India. The steady decrease in wind speed and decline in net radiation not only balanced the impact of the temperature increases on ETO, but may have actually caused the decreases in ETO over the humid region of northeast India. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号