首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   16篇
  国内免费   42篇
测绘学   10篇
大气科学   39篇
地球物理   4篇
地质学   27篇
海洋学   5篇
综合类   3篇
自然地理   42篇
  2024年   5篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   11篇
  2018年   10篇
  2017年   9篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   11篇
  2012年   12篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
1.
通过西部煤炭资源勘查对遥感技术的需求以及煤田地质体的可解译性、遥感技术的实际应用效果分析,论述了西部煤炭资源调查评价中遥感技术的重要作用,提出了今后遥感技术的应用建议.  相似文献   
2.
GMS卫星遥感中国地区气溶胶光学厚度   总被引:20,自引:2,他引:20       下载免费PDF全文
讨论了利用GMS卫星遥感湖面上空气溶胶光学厚度的方法,根据在5个湖面附近与多波段光度计遥感结果的比较,对卫星遥感的方法和结果进行了检验,然后利用该方法遥感了中国大陆25个湖面上空气溶胶光学厚度.结果显示,利用卫星反演湖面光学厚度可以提供大陆上空气溶胶的信息,是研究大陆上空气溶胶光学厚度一个可行的方法.  相似文献   
3.
本文利用NCEP/NCAR再分析资料和中国2374站日降水资料,通过水汽收支方程分解方法分析了华南夏季降水在1993~2002年时段年代际增多以及2003~2013年时段年代际减少的水汽输送特征及其成因。结果表明:1993~2002年时段(2003~2013年时段),局地环流导致异常下沉(上升)气流,南亚高压偏东(偏西)和西太平洋副热带高压(简称副高)偏西(偏东),菲律宾及副高西南侧水汽输送加强(减弱),华南地区低层出现强的水汽辐合(辐散),导致降水偏多(偏少)。华南地区夏季降水两次年代际变化主要与风速变化引起的水汽输送动力散度项的异常有关,同时还受到与比湿变化引起的水汽输送热力散度项异常、及天气尺度的涡旋引起的水汽输送涡流散度项异常影响。此外,研究发现水汽输送的异常与环流和海温异常均密切相关。  相似文献   
4.
华北雨季开始早晚与大气环流和海表温度异常的关系   总被引:2,自引:0,他引:2  
本文利用国家气候中心的1961~2016年华北雨季监测资料、美国国家环境预报中心/大气研究中心(NCEP/NCAR)的大气再分析资料、NOAA海表温度资料,分析了华北雨季开始早晚的气候特征,然后利用合成分析、回归分析等方法,研究了华北雨季开始早晚与大气环流系统和关键区域海表温度的关系。结果表明,56 a来华北雨季开始最早在7月6日,最晚在8月10日,1961~2016年华北雨季开始平均日期是7月18日。华北雨季开始时间具有显著的年际变化,但雨季发生早晚的长期变化趋势不太明显。华北雨季开始早晚与西太平洋副热带高压(简称副高)、东亚副热带西风急流、东亚夏季风等环流系统的活动关系密切,当对流层高层副热带西风急流建立偏早偏强,中层西太平洋副高第二次北跳偏早,低层东亚夏季风北进提前时,华北雨季开始偏早,反之华北雨季开始偏晚。华北雨季开始早晚与春、夏季热带印度洋、赤道中东太平洋海表温度关系显著且稳定,当Ni?o3.4指数和热带印度洋全区海表温度一致模态(IOBW)为正值时,贝加尔湖大陆高压偏强,副高偏强偏南,东亚夏季风偏弱,导致华北雨季开始偏晚;当海表温度指数为负值时,则华北雨季开始偏早。  相似文献   
5.
本文介绍了利用在南极长城站接收来自RWM(莫斯科)和RID(伊尔库茨克)台的授时信号的无线电波时延的测量方法,并依据1991年4月至1991年9月所测量的传播时延数据分析了电波传播路径。说明了沿长、短大圆路径的传播时段。判定存在着非大圆路径传播并阐明了关于非大圆路径传播的一些变化规律。对非大圆路径发生的条件进行了探讨  相似文献   
6.
野外科学观测研究台站(网络)和科学数据中心建设发展   总被引:1,自引:1,他引:1  
中国科学院地理科学与资源研究所成立80年来,十分重视野外台站(网络)和科学数据中心的建设,取得了辉煌成就。研究所建立了4个野外观测研究网络,引领了中国生态系统研究网络的建设与发展;成立了2个国家级科学数据中心,1个中国科学院数据中心,1个数据出版系统并于2016年加入了世界数据系统;拥有2个国家级野外观测研究站,1个中国科学院野外研究站,形成了独具特色的野外观测研究平台和数据共享服务平台。本文回顾了中国生态系统研究网络、国家生态系统观测研究网络、中国通量观测研究网络、中国物候观测网和禹城站、拉萨站、千烟洲站以及地球系统科学数据中心、生态科学数据中心、资源环境科学数据中心和全球变化科学研究数据出版系统的发展历程。地理资源所台站(网络)从无到有,不断发展壮大,引领了中国野外观测研究事业的发展,支撑了地理学、生态学等重要科学成果产出,科技支撑能力和示范能力大幅提升,有力支撑了华北平原、青藏高原以及南方山地丘陵区的生态文明建设;成为中国地球系统科学、野外台站、资源环境等学科和领域最大的科学数据汇聚中心,数据共享服务成效显著,在国内外具有广泛影响力。在未来发展中,地理资源所将充分发挥野外台站(网络)综合中心作用,强化生态系统、碳水通量、物候等观测研究网络的能力建设,稳步提升野外观测研究站条件保障能力和科学数据中心的数据汇聚能力、分析挖掘能力以及共享服务能力,持续推动和引领中国科学数据的共享,在科学研究和支撑国家需求等方面做出更大贡献。  相似文献   
7.
赵俊虎  宋文玲  柯宗建 《气象》2020,46(7):982-993
2019/2020年冬季,我国大部分地区气温显著偏高,降水异常偏多,气候总体表现为“暖湿”的异常特征。异常成因分析表明:2019/2020年东亚冬季风强度较常年同期偏弱,西伯利亚高压异常偏弱,季节内冬季风强度阶段性变化特征显著;北极极涡收缩于极地,强度偏强,AO为异常偏强的正位相,乌拉尔山阻塞高压活动偏弱,东亚槽偏弱,欧亚中高纬以纬向环流为主;西太平洋副热带高压强度偏强、位置偏西偏北,印缅槽阶段性活跃,二者有利于太平洋和印度洋水汽向我国输送。受北半球环流异常的影响,我国冬季出现了“暖湿”的异常特征。进一步对东亚冬季风偏弱的可能原因分析表明:2019年秋冬季赤道中太平洋暖海温发展,2019年10月至2020年1月Ni〖AKn~D〗o3.4指数均大于0.5℃,这种类中部型El Ni〖AKn~D〗o海温异常有利于激发偏强、偏北的西北太平洋反气旋,进而抑制了东亚冬季风的发展和南下;此外,冬季北半球极涡收缩于极地,强度偏强,AO持续异常偏强的正位相,均不利于乌拉尔山阻塞高压的发展,且东亚大槽明显偏弱,共同导致了欧亚中高纬地区以纬向环流为主,东亚冬季风偏弱。  相似文献   
8.
本文讨论了在南极长城站收测BPM授时台时号场强的实验数据并和国际广播行政大会推荐的计算方法得到的预测值进行了比较。结果表明,在此条电路上两者较吻合,均方根偏差为6.9dBμv/m,从而在实验上初步验证了FTZ方法的可用性。  相似文献   
9.
赵俊虎  封国林  杨杰  支蓉  王启光 《气象学报》2012,70(5):1021-1031
利用历史数据,研究了西太平洋副热带高压指数的特征,证实脊线指数和西伸脊点指数可以较好地描述西太平洋副热带高压,同时也指出这两个指数的年际和年代际变化及其不同的配置,是造成中国夏季降水时空分布和旱涝异常的复杂性、多变性的主要原因之一。据此,将西太平洋副热带高压西伸脊点指数和脊线指数的距平投影到二维平面上,对西太平洋副热带高压进行了分类,并对其各种类型下中国夏季降水进行了合成分析,发现夏季西太平洋副热带高压西伸脊点和脊线不同配置下中国夏季降水的总体分布具有明显的规律性:在西太平洋副热带高压脊线偏北的情况下,夏季降水总体表现出南北两条雨带;在西太平洋副热带高压脊线正常的情况下,夏季降水总体表现为北多南少,长江以北降水偏多;在西太平洋副热带高压脊线偏南的情况下,夏季降水总体表现为南多北少,长江流域及其以南地区降水偏多;上述3种情况下西伸脊点越偏西,降水范围越大。此外,通过计算1951—2010年各年夏季降水实况与其西太平洋副热带高压所属年份夏季降水合成的距平相关系数,发现同一类型下各年夏季降水与其合成分布总体相似,说明了西太平洋副热带高压位置对中国降水具有明显的影响,同时也说明此种分类具有一定的合理性。最后,通过对9种西太平洋副热带高压类型下北半球夏季500hPa高度场和850hPa风场距平分别进行合成,对不同西太平洋副热带高压类型下中国夏季降水的大尺度环流背景和可能机理进行了分析。  相似文献   
10.
正The study of magnetostratigraphy and cyclostratigraphy in the last two decades has provided a great deal of opportunities to improve the geologic time scale.The Cenozoic and Mesozoic geologic timescale have been well calibrated (Gradstein et al..2012;Ogg et al,2012;Cohen et al.,2018).However,for the Paleozoic era the uncertainty over boundary ages are still very large.The reasons include that the geomagnetic polarity  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号