首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   5篇
地质学   1篇
海洋学   1篇
自然地理   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2003年   2篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 206 毫秒
1
1.
A critical requirement for an effective and coordinated response by public entities tasked with management, security, and relief during large-scale public events or natural disasters is the availability of current situational information. However, today there is a lack of comprehensive operational systems allowing a near-real-time (NRT) collection, visualization, and provision of situational information for larger areas. In this study a methodological framework is proposed, which allows an NRT extraction and visualization of situational information based on aerial image acquisition. The framework combines digital image analysis using a generic supervised information extraction approach based on statistical modeling with a downstream web-based visualization component realized through an automatic update of web services. Even though being applicable for different scenarios, the workflow will be demonstrated for the specific use-case of a NRT monitoring of open spaces including assembly and parking areas. Compared to other approaches, image analysis results indicate a high robustness and a low demand for computational power sources (7 seconds per image). Due to a high degree of automation, the proposed workflow contributes to a NRT ‘end-to-end’ monitoring system, which was developed within the VABENE (German acronym for ‘traffic management under large-scale public events and disaster conditions’) project covering all parts from the acquisition of raw aerial imagery to the dissemination of information products to end-users.  相似文献   
2.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   
3.
Integrated assessment models (IAMs) are regularly used to evaluate different policies of future emissions reductions. Since the global costs associated with these policies are immense, it is vital that the uncertainties in IAMs are quantified and understood. We first demonstrate the significant spread in the climate system and carbon cycle components of several contemporary IAMs. We then examine these components in more detail to understand the causes of differences, comparing the results with more complex climate models and earth system models (ESMs), where available. Our results show that in most cases the outcomes of IAMs are within the range of the outcomes of complex models, but differences are large enough to matter for policy advice. There are areas where IAMs would benefit from improvements (e.g. climate sensitivity, inertia in climate response, carbon cycle feedbacks). In some cases, additional climate model experiments are needed to be able to tune some of these improvements. This will require better communication between the IAM and ESM development communities.  相似文献   
4.
Probabilistic climate projections based on two SRES scenarios, an IMAGE reference scenario and five IMAGE mitigation scenarios (all of them multi-gas scenarios) using the Bern2.5D climate model are calculated. Probability distributions of climate model parameters that are constrained by observations are employed as input for the climate model. The sensitivity of the resulting distributions with respect to prior assumptions on climate sensitivity is then assessed. Due to system inertia, prior assumptions on climate sensitivity play a minor role in the case of temperature projections for the first half of the 21st century, but these assumptions have a considerable influence on the distributions of the projected temperature increase in the year 2100. Upper and lower probabilities for exceeding 2°C by the year 2100 are calculated for the different scenarios. Only the most stringent mitigation measures lead to low probabilities for exceeding the 2°C threshold. This finding is robust with respect to our prior assumptions on climate sensitivity. Further, probability distributions of total present-value damages over the period 2000–2100 for the different scenarios are calculated assuming a wide range of damage cost functions, and the sensitivity of these distributions with respect to the assumed discount rate is investigated. Absolute values of damage costs depend heavily on the chosen damage cost function and discount rate. Nevertheless, some robust conclusions are possible.  相似文献   
5.
Contributions to Mineralogy and Petrology - The 1.8–1.7&;nbsp;Ga Eidsfjord Anorthosite Complex on Langøy, Vesterålen, north Norway is thrust over monzonitic gneisses in a...  相似文献   
6.
Probabilistic climate change projections using neural networks   总被引:5,自引:0,他引:5  
Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding –1.2 Wm–2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.  相似文献   
7.
Evaluation and communication of the relative degree of certainty in assessment findings are key cross-cutting issues for the three Working Groups of the Intergovernmental Panel on Climate Change. A goal for the Fifth Assessment Report, which is currently under development, is the application of a common framework with associated calibrated uncertainty language that can be used to characterize findings of the assessment process. A guidance note for authors of the Fifth Assessment Report has been developed that describes this common approach and language, building upon the guidance employed in past Assessment Reports. Here, we introduce the main features of this guidance note, with a focus on how it has been designed for use by author teams. We also provide perspectives on considerations and challenges relevant to the application of this guidance in the contribution of each Working Group to the Fifth Assessment Report. Despite the wide spectrum of disciplines encompassed by the three Working Groups, we expect that the framework of the new uncertainties guidance will enable consistent communication of the degree of certainty in their policy-relevant assessment findings.  相似文献   
8.
Profiles made during the JGOFS EgPac October 1992 time series cruise to the equator with a Large Aggregate Profiling System (LAPS) recorded the concentration and size distribution of particles in the marine snow size range ( > 0.5 mm diameter). Profiles were made routinely at local midnight during the twenty day occupation of the time series station on the equator. The LAPS data set, when combined with the CTD/transmissometer data set from the EgPac program's intensive profiling operation, reveals a complex dynamic of particle production and aggregation driven by the equatorial flow field.During the cruise, the influence of the passage of a Tropical Instability Wave (TIW) was observed in the transmissometer/aggregate and temperature/salinity data sets. A peak in particle production rate occurred in conjunction with the maximum shoaling of the thermocline and a minimum in the aggregate volume concentration. Subsequently, the particle load in the surface water increased followed by an increase in the aggregate abundance. Quasi -oligotrophic conditions on the equator (subsurface particle and aggregate maxima and decreased particle production rates) toward the end of the time series corresponded to the appearance of stratified low salinity water characteristic of more northerly conditions.The variations in temperature and salinity fields are ascribed to the passage of a TIW; in sequence: the trailing edge, the northwestward-flowing cool cusp water and the convergent front. Current meters at the equator recorded a rotational flow at 80 m, with a shift from southeastward to northeastward flow during this sequence. A simple conceptual model of meridional flow field is presented in which poleward transport of the upwelled water from the equator returns at shallow depths to mix with the EUC. The signature of this return flow is reflected in the decrease in the vertical gradients of nutrients and oxygen at the equator with respect to the poleward gradients, and a subsurface particle maximum below the EUC. The flow field's effect on the distribution of particles is reflected in the meridional pattern of the sediment accumulation rate (Murray and Leinen, 1996). The return flow of particles to the equator is reflected in the maximum in accumulation rate near the equator. The longterm influence of TIW's is reflected in the asymmetry of the accumulation rates across the equator as described by Murray and Leinen (1996), with the maximum accumulation rate found south of the equator, a local minimum in accumulation rate at approximately 2°N, and a local maximum near 4°N.  相似文献   
9.
We present a new surface velocity field for Baja California using GPS data to test the rigidity of this microplate, calculate its motion in a global reference frame, determine its relative motion with respect to the North American and the Pacific plates, and compare those results to our estimate for Pacific–North America motion. Determination of Pacific Plate motion is improved by the inclusion of four sites from the South Pacific Sea Level and Climate Monitoring Project. These analyses reveal that Baja California moves as a quasi-rigid block but at a slower rate in the same direction, as the Pacific Plate relative to North America. This is consistent with seismic activity along the western edge of Baja California (the Baja California shear zone), and may reflect resistance to motion of the eastern edge of the Pacific Plate caused by the 'big bend' of the San Andreas fault and the Transverse Ranges in southern California.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号