首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115666篇
  免费   1838篇
  国内免费   925篇
测绘学   2928篇
大气科学   8044篇
地球物理   22699篇
地质学   42959篇
海洋学   9704篇
天文学   25516篇
综合类   382篇
自然地理   6197篇
  2022年   549篇
  2021年   941篇
  2020年   1057篇
  2019年   1114篇
  2018年   4394篇
  2017年   4134篇
  2016年   3932篇
  2015年   1832篇
  2014年   2934篇
  2013年   5297篇
  2012年   3815篇
  2011年   6047篇
  2010年   5277篇
  2009年   6577篇
  2008年   5674篇
  2007年   5947篇
  2006年   4019篇
  2005年   3440篇
  2004年   3319篇
  2003年   3153篇
  2002年   2847篇
  2001年   2485篇
  2000年   2368篇
  1999年   1934篇
  1998年   2028篇
  1997年   1940篇
  1996年   1591篇
  1995年   1630篇
  1994年   1387篇
  1993年   1276篇
  1992年   1233篇
  1991年   1151篇
  1990年   1297篇
  1989年   1102篇
  1988年   982篇
  1987年   1231篇
  1986年   1009篇
  1985年   1305篇
  1984年   1426篇
  1983年   1376篇
  1982年   1248篇
  1981年   1187篇
  1980年   1050篇
  1979年   970篇
  1978年   991篇
  1977年   889篇
  1976年   869篇
  1975年   822篇
  1974年   808篇
  1973年   829篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
3.
4.
5.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
6.
Sapphirine–quartz granulites from the Cocachacra region of the Arequipa Massif in southern Peru record early Neoproterozoic ultrahigh‐temperature metamorphism. Phase equilibrium modelling and zircon petrochronology are used to quantify timing and pressure–temperature (P–T) conditions of metamorphism. Modelling of three magnetite‐bearing sapphirine–quartz samples indicates peak temperatures of >950°C at ~0.7 GPa and a clockwise P–T evolution. Elevated concentrations of Al in orthopyroxene are also consistent with ultrahigh‐temperature conditions. Neoblastic zircon records ages of c. 1.0–0.9 Ga that are interpreted to record protracted ultrahigh‐temperature metamorphism. Th/U ratios of zircon of up to 100 reflect U‐depleted whole‐rock compositions. Concentrations of heavy rare earth elements in zircon do not show systematic trends with U–Pb age but do correlate with variable whole‐rock compositions. Very large positive Ce anomalies in zircon from two samples probably relate to strongly oxidizing conditions during neoblastic zircon crystallization. Low concentrations of Ti‐in‐zircon (<10 ppm) are interpreted to result from reduced titania activities due to the strongly oxidized nature of the granulites and the sequestration of titanium‐rich minerals away from the reaction volume. Whole‐rock compositions and oxidation state have a strong influence on the trace element composition of metamorphic zircon, which has implications for interpreting the geological significance of ages retrieved from zircon in oxidized metamorphic rocks.  相似文献   
7.
8.
Abstract— Active capture is a new process for the incorporation of large quantities of heavy noble gases into growing surfaces. Adsorption in the conventional sense involves surface bonding by polarization (Van der Waals forces). What is referred to as “anomalous adsorption” of heavy noble gases involves chemical bonds and can occur when other (more chemically active) species are not available to preempt sites with unfilled bonds. Anomalous adsorption has been observed under conditions of fracture, vacuum deposition and ionizing radiation. Active capture depends upon anomalous adsorption to retain noble gases on a surface long enough to be captured in a growing surface film as it is deposited. The fundamental principle may be the impingement onto the growing film with sufficient energy to liberate surface electrons (work function energy of a few electronvolts) so that they are retained by anomalous adsorption long enough to be entrapped in the growing surface. Trapping efficiencies of ?1% have been observed for Kr and Xe in laboratory experiments, implying a fundamentally new mechanism for the incorporation of heavy noble gases onto surfaces. It may play a role in explaining the large concentrations of planetary noble gases contained in phase‐Q.  相似文献   
9.
Abstract— The possibility of volcanism on Mercury has been a topic of discussion since Mariner 10 returned images of half the planet's surface showing widespread plains material. These plains could be volcanic or lobate crater ejecta. An assessment of the mechanics of the ascent and eruption of magma shows that it is possible to have widespread volcanism, no volcanism on the surface whatsoever, or some range in between. It is difficult to distinguish between a lava flow and lobate crater ejecta based on morphology and morphometry. No definite volcanic features have been identified on Mercury. However, known lunar volcanic features cannot be identified in images with similar resolutions and viewing geometries as the Mariner 10 dataset. Examination of high‐resolution, low Sun angle Mariner 10 images reveals several features which are interpreted to be flow fronts; it is unclear if these are volcanic flows or ejecta flows. This analysis implies that a clear assessment of volcanism on Mercury must wait for better data. MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) will take images with viewing geometries and resolutions appropriate for the identification of such features.  相似文献   
10.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号