首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   8篇
地球物理   5篇
海洋学   1篇
  2021年   1篇
  2017年   3篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2004年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The results of an experimental `end to end' assessment of the effects of climate change on water resources in the western United States are described. The assessment focuses on the potential effects of climate change over the first half of the 21st century on the Columbia, Sacramento/San Joaquin, and Colorado river basins. The paper describes the methodology used for the assessment, and it summarizes the principal findings of the study. The strengths and weaknesses of this study are discussed, and suggestions are made for improving future climate change assessments.  相似文献   
2.
3.
Projecting twenty-first century regional sea-level changes   总被引:2,自引:0,他引:2  
We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.  相似文献   
4.
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.  相似文献   
5.
Liu  Xueyuan  Köhl  Armin  Stammer  Detlef  Masuda  Shuhei  Ishikawa  Yoichi  Mochizuki  Takashi 《Climate Dynamics》2017,49(3):1061-1075

We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.

  相似文献   
6.
Using a parallel-track approach to estimate geostrophic surface velocities, an estimate of the statistics of ocean geostrophic surface currents and momentum stresses is provided on a 10 km along-track resolution from the first 49 repeat cycles (16 months) of the Jason-TOPEX/Poseidon tandem altimetric sea surface height (SSH) data. Results are compared with estimates obtained in a traditional way from along-track SSH data at crossover points and with in situ, Acoustic Doppler Current Profiler (ADCP) measurements obtained on board the VOS Oleander along a nominal path connecting Bermuda with the U.S. mainland. Agreements with the Oleander data are reasonable when simultaneous (in space and time) sampling is available. However, amplitudes of parallel-track geostrophic velocity variances are about 25% lower as compared to Oleander measurements which represent geostrophic and ageostrophic flow components. Estimates of velocity variances show clear signs of an anisotropic eddy field in the vicinity of all major current systems. At the same time estimates of Reynolds stresses and eddy momentum fluxes show a convergence of eddy momentum in all those regions, suggesting a forcing of the mean flow by the eddy field there.  相似文献   
7.
The sensitivity of the predictive skill of a decadal climate prediction system is investigated with respect to details of the initialization procedure. For this purpose, the coupled ocean–atmosphere UCLA/MITgcm climate model is initialized using the following three different initialization approaches: full state initialization (FSI), anomaly initialization (AI) and FSI employing heat flux and freshwater flux corrections (FC). The ocean initial conditions are provided by the German contribution to Estimating the Circulation and Climate of the Ocean state estimate (GECCO project), from which ensembles of decadal hindcasts are initialized every 5 years from 1961 to 2001. The predictive skill for sea surface temperature (SST), sea surface height (SSH) and the Atlantic meridional overturning circulation (AMOC) is assessed against the GECCO synthesis. In regions with a deep mixed layer the predictive skill for SST anomalies remains significant for up to a decade in the FC experiment. By contrast, FSI shows less persistent skill in the North Atlantic and AI does not show high skill in the extratropical Southern Hemisphere, but appears to be more skillful in the tropics. In the extratropics, the improved skill is related to the ability of the FC initialization method to better represent the mixed layer depth, and the highest skill occurs during wintertime. The correlation skill for the spatially averaged North Atlantic SSH hindcasts remains significant up to a decade only for FC. The North Atlantic MOC initialized hindcasts show high correlation values in the first pentad while correlation remains significant in the following pentad too for FSI and FC. Overall, for the current setup, the FC approach appears to lead to the best results, followed by the FSI and AI procedures.  相似文献   
8.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   
9.
Wind-speed inversion from HF radar first-order backscatter signal   总被引:2,自引:1,他引:1  
Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4.0 m/s for 27.68 and 12.5 MHz, respectively. In addition, an upper limit is identified which is caused by wave energy saturation at the Bragg wave frequency. Estimation of this limit took place through an evaluation of a year long database of ocean spectra generated by a numerical model (third generation WAM). It was found to be at 9.0 and 11.0 m/s for 27.68 and 12.5 MHz, respectively. Above this saturation limit, conventional second-order methods have to be applied, which at this range of wind speed no longer suffer from low signal-to-noise ratios. For use in operational systems, a hybrid of first- and second-order methods is recommended.  相似文献   
10.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号