首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   7篇
地球物理   1篇
地质学   4篇
  2023年   1篇
  2021年   2篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有12条查询结果,搜索用时 281 毫秒
1.
High-pressure synchrotron infrared (IR) absorption spectra were collected between 650 and 4,000 cm−1 at ambient temperature for hydrous Mg-ringwoodite (γ-Mg2SiO4) up to 30 GPa. The main feature in the OH stretching region is an extremely broad band centred at 3,150 cm−1. The hydrogen bond is strong for most protons and the most probable site for protonation is the tetrahedral edge. With increasing pressure, this band shifts downward while decreasing its integrated intensity until disappearance at a pressure of 25 GPa. Only one band at 2,450 cm−1 and an absorption plateau persist with a maximum wavenumber of 3,800 cm−1. This behaviour is reversible upon pressure release. We interpret this as a second-order phase transition occurring in hydrated Mg-ringwoodite at high pressure (beyond ∼ 25 GPa). This result is compatible with the observation by Kleppe et al. (Phys Chem Miner 29:473–476, 2002a) who suggested the presence of Si–O–Si linkages and/or partial increase in the coordination of Si. Beyond the phase transition, the protons are delocalized and their environment on the ringwoodite structure is probably quite different from that at low pressure. Data obtained in situ at high pressures and temperatures are needed to better understand the effect of protonation on the structure and to better constrain this phase transition.  相似文献   
2.
The potential for porous windbreaks to enhance wind-turbine power production is studied using linearized theory and wind-tunnel experiments. Results suggest that windbreaks have the potential to substantially increase power production, while lowering mean shear, and leading to negligible changes in turbulence intensity. The fractional increase in turbine power output is found to vary roughly linearly with windbreak height, where a windbreak 10% the height of the turbine hub increases power by around 10%. Wind-tunnel experiments with a windbreak imposed beneath a turbulent boundary layer show the linearized predictions to be in good agreement with particle-image-velocimetry data. Power measurements from a model turbine further corroborate predictions in power increase. Moreover, the wake of the windbreak showed a significant interaction with the turbine wake, which may inform windbreak use in large wind farms. Power measurements from a second turbine downwind of the first with its own windbreak show that the net effect for multiple turbines is dependent on windbreak height.  相似文献   
3.
Identification of the exact route followed by Hannibal during his invasion of Italia in the Second Punic War is one of the major questions of antiquity and one that historians/archaeologists have long studied. One of the many clues in the ancient literature that can help answer this question is the mention of fired rock, the result of a conflagration Hannibal is reputed to have employed to reduce the size of boulders in a blocking rockslide some distance down from the high col on the Italian side. The only route with evidence of fired rock along the roadway leading into Italia follows the Col du Clapier, one of the possible northern routes discussed by historians. Radiocarbon dating of calcined rocks is not possible, but whereas Time‐of‐Flight Secondary Ion Mass Spectrometry (ToF‐SIMS), Field Emission Scanning Electron Microscope (FESEM‐EDS), backscatter electron scanning microscopy (BSE), High Resolution Transmission Electron Microscope (HRTEM), and Raman Spectroscopic data do not provide an age for the burnt rock, compositional evidence of the conflagration derived from these analyses may shed light on Hannibal's actual route. © 2007 Wiley Periodicals, Inc.  相似文献   
4.
5.
The relative incompatibility of Ar and K are fundamental parameters in understanding the degassing history of the mantle. Clinopyroxene is the main host for K in most of the upper mantle, playing an important role in controlling the K/Ar ratio of residual mantle and the subsequent time-integrated evolution of 40Ar/36Ar ratios. Clinopyroxene also contributes to the bulk Ar partition coefficient that controls the Ar degassing rate during mantle melting. The partitioning of Ar and K between clinopyroxene and quenched silicate melt has been experimentally determined from 1 to 8 GPa for the bulk compositions Ab80Di20 (80 mol% albite-20 mol% diopside) and Ab20Di80 with an ultraviolet laser ablation microprobe (UVLAMP) technique for Ar analysis and the ion microprobe for K. Data for Kr (UVLAMP) and Rb (ion probe) have also been determined to evaluate the role of crystal lattice sites in controlling partitioning. By excluding crystal analyses that show evidence of glass contamination, we find relatively constant Ar partition coefficients (DAr) of 2.6 × 10−4 to 3.9 × 10−4 for the Ab80Di20 system at pressures from 2 to 8 GPa. In the Ab20Di80 system, DAr shows similar low values of 7.0 × 10−5 and 3.0 × 10−4 at 1 to 3 GPa. All these values are several orders of magnitude lower than previous measurements on separated crystal-glass pairs.DK is 10 to 50 times greater than DRb for all experiments, and both elements follow parallel trends with increasing pressure, although these trends are significantly different in each system studied. The DK values for clinopyroxene are at least an order of magnitude greater than DAr under all conditions investigated here, but DAr appears to show more consistent behavior between the two systems than K or Rb. The partitioning behavior of K and Rb can be explained in terms of combined pressure, temperature, and crystal chemistry effects that result in changes for the size of the clinopyroxene M2 site. In the Ab20Di80 system, where clinopyroxene is diopside rich at all pressures, DK and DRb increase with pressure (and temperature) in an analogous fashion to the well-documented behavior of Na. For the Ab80Di20 system, the jadeite content of the clinopyroxene increases from 22 to 75 mol% with pressure resulting in a contraction of the M2 site. This has the effect of discriminating against the large K+ and Rb+ ions, thereby countering the effect of increasing pressure. As a consequence DK and DRb do not increase with pressure in this system.In contrast to the alkalis (Na, K, and Rb), DKr values are similar to DAr despite a large difference in atomic radius. This lack of discrimination (and the constant DAr over a range of crystal compositions) is also consistent with incorporation of these heavier noble gases at crystal lattice sites and a predicted consequence of their neutrality or “zero charge.” Combined with published DAr values for olivine, our results confirm that magma generation is an efficient mechanism for the removal of Ar from the uppermost 200 km of the mantle, and that K/Ar ratios in the residuum are controlled by the amount of clinopyroxene. Generally, Ar is more compatible than K during mantle melting because DAr for olivine is similar to DK for clinopyroxene. As a result, residual mantle that has experienced variable amounts of melt extraction may show considerable variability in time-integrated 36Ar/40Ar.  相似文献   
6.
The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2–3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned counterpart), implying a change in the momentum/power available at turbine locations. Additionally, power spectra of the streamwise and vertical velocity components indicate that the signature of each turbine-tip vortex structure persists to locations deep within the wind farm.  相似文献   
7.
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.  相似文献   
8.
A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z 01)/ln(δ i /z 01), where z, δ i and z 01 are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.  相似文献   
9.
The Atlantic coast of Galicia (NW Spain) is a high-energy environment where shingle beaches are currently developing. These coarser sediments alternate with sandy deposits which are also considered as beaches typical of a low-energy environment. The physical association of both types of sediment with contrasted sedimentary significance raises problems of interpretation. The study of four outcrops of fossil aeolianites on this coast has allowed us to reconstruct their evolution from the end of the Upper Pleistocene to the present day. Their chronology, estimated by optically stimulated luminescence between 35 and 14 ky at the end of the last glaciation (MIS2), coincides with a local sea level 120 m below the present one. This implies a coastline shifted several kilometres from its current location and the subaerial exposure of a wide strip of the continental shelf covered by sands. The wind blew sand to form dunes towards the continent, covering the coastal areas, which then emerged with no other limitation than the active river channels. Sea-level rise during the Holocene transgression has progressively swamped these aeolian deposits, leaving only flooded dunes, relict coastal dunes and climbing dunes on cliffs up to 180 m high. The aeolian process continued as long as there was a sandy source area to erode, although accretion finished when the sea reached its current level (Late Holocene). Since then, the wind turned from accretion to erosion of the dunes and sand beaches. This erosion exposes the older shingle beaches (probably of Eemian age) buried under the aeolian sands, as well as old, submerged forest remains and megalithic monuments. The destruction of sand beaches and dunes currently observed along the Galician coast is linked, according to most researchers, to anthropogenic global warming. However, their management should consider these evolutive issues.  相似文献   
10.
Cartes  Pablo  Chamorro  Alondra  Echaveguren  Tomás 《Natural Hazards》2021,108(2):2101-2121
Natural Hazards - Tunnels allow the continuity of rural road and urban transportation networks. Their shutdown provokes a loss in the transport system’s level service, which entails higher...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号