首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   1篇
地质学   12篇
  2017年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  1996年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Type III (humic) organic matter from the Mahakam delta (Indonesia) was chosen to compare artificial and natural coal series. Powdered and concentrated immature organic matter was heated in sealed gold tubes for 24 hr at temperatures ranging from 250 to 550°C and under pressures ranging from 0.5 to 4 kb, with and without water. Both elemental and Rock-Eval analyses were used to characterize the products. A comparison between our results, published data and the natural model shows that, quantitatively, natural maturation is simulated better when pyrolysis is performed under confined conditions (no free volume, no diluting inert gas). Thus, pyrolysis in a medium swept by an inert gas, vacuum pyrolysis and some pyrolysis in sealed glass tubes must be considered to be poor simulation tools. The presence of water does not seem to have an essential effect. Allowing the hydrocarbons formed to reach a certain value of partial pressure seems to be important. Results are unchanged when external pressure varies from 0.5 to 4 kb.  相似文献   
2.
The natural thermal evolution of type III coals (Humic origin) is expressed during diagenesis by a loss of oxygen as CO2 and H2O. Other phenomena such as oxidation can cause extensive geochemical modifications and may complicate the effects of simple maturation.Humic coals from the Jurassic in southeastern Utah were studied by elemental analysis, Rock-Eval pyrolysis and infrared spectroscopy. In a van Krevelen diagram (atomic H/C vs atomic O/C), the samples fall within the envelope defined by 860 reference humic coals covering the entire range of diagenesis. Nevertheless, various criteria (geochemical, petrographic, geological and microscopic) cast doubt upon the interpretation that such a distribution of coal composition results from thermal maturation.The same criteria indicate the intervention of redox phenomena. Comparison of our results with those from artificial and natural oxidation shows that these coals were subjected to an oxidation process different from ordinary late alteration. This process was probably due to circulation of highly oxidizing saline water causing oxygen fixation and the transformation of carboxyls into carboxylate anions. The cations that were fixed are oxygenated and certainly contain calcium, but also uranium and perhaps several other cations (V, Mo, Fe...). Emphasis is placed on possible mechanisms that cause such phenomena.  相似文献   
3.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   
4.
Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020 for δ15N and δ40Ar. It led to a 16±1.5 °C surface temperature variation during a rapid warming (?70000 yr). To cite this article: A. Landais et al., C. R. Geoscience 336 (2004).  相似文献   
5.
High-resolution clay mineralogical analyses were performed on sediment deposited during the last 50,000 yr in the Alboran sea (ODP Site 976). The clay mineral record is compared with pollen assemblages and with annual precipitation (Pann) and mean temperatures of the coldest month (MTCO) reconstructed with the modern analog technique (MAT). Enhanced contribution of palygorskite, a typical wind-blown clay mineral, characterizes the North Atlantic cold climatic events. Coeval development of the semi-arid vegetation (Artemisia rich) associated with a drastic fall of reconstructed precipitations and temperatures, suggest cold and arid continental conditions in the West Mediterranean area during North Atlantic cold events. The clay mineral association, especially the palygorskite content and the illite-to-kaolinite ratio, indicate western Morocco as one of the major source of the clay-size fraction during the North Atlantic cold events. The maximum abundance of Artemisia associated with the presence of Argania pollen both indicate Morocco as the main origin for pollen during these cold periods. The comparison of these pollen and clay mineral-specific features allows us to pinpoint western Morocco as the dominant source of wind-blown particles during North Atlantic cold events. These specific mineralogical composition and palynological assemblages reveal enhanced aridity over North Africa and intensification of winds favouring dust erosion and transport from North Africa toward the Alboran Sea during the North Atlantic cold events. According to atmospheric models, such a meridian transport (1) likely results from the development of strong and stable anticyclonic conditions over the tropical Atlantic and North Africa, similar to today's summer meteorological configuration and (2) implies a northward position of the westerly winds during North Atlantic cold events. Finally the synoptic situation over the West Mediterranean during the North Atlantic cold events is compared with the North Atlantic Oscillation (NAO), suggesting that during the cold Atlantic events, weather regimes over Europe and North Africa may have been systematically shifted towards a positive NAO situation.  相似文献   
6.
The isotopic composition of atmospheric O2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln(δ17O + 1) vs. ln(δ18O + 1) plots are characterized by very high precision (∼0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity (h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.  相似文献   
7.
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (~ 0.7–0.8‰·°C?1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C?1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m?2.yr?1 may record a seasonal cycle at shallow depths.  相似文献   
8.
One of the options for the long-term confinement of high-level, long-lived radioactive waste is the disposal in deep geological formations. In France, this option is particularly studied in a 155-Ma-old Jurassic clay formation located in the eastern part of the Paris Basin. Fifteen years of research and the construction of an underground research laboratory have provided a large set of data that allows the feasibility of the geological disposal to be evaluated from a scientific standpoint. Geochemical aspects of this research are of major importance because they provide essential information on both the characteristics of the geological medium and the long-term behaviour of the waste and the engineered system.  相似文献   
9.
The biodegradation of free hydrocarbons migrated in reservoir faaes has often been observed in petroleum exploration. This bacterial alteration is characterized by the progressive removal of different classes of hydrocarbons. One of the most important consequences of biodegradation is the reduction of sulphate, as noted in several Pb-Zn deposits. Biodegradation of oils spatially associated with uranium deposits has also been observed in Lodeve (France), Grand Canyon (Arizona, USA), Temple Mountain (Utah, USA) and leads to the transformation of fluid oils into solid bitumens. Within this study emphasis has been laid on the relationships between the effects of biodegradation on organic matter (oxidation or aromatization) and the nature of aqueous solutions analysed in fluid inclusions trapped in authigenic minerals. Different mechanisms are proposed to explain the transformations of organic matter during biodegradation and their possible links with ore-forming processes.  相似文献   
10.
For a better understanding of siliciclastic shelf environments, correlation between sequence stratigraphy and organic geochemistry is used. Our study is focused on the Cretaceous deposits of Marcoule (Gard, France), particularly on a close-packed siltites layer (200–400 m thick), which is well characterized as a marine flooding facies of a single trangressive–regressive cycle. During the Uppermost Albian and the Lower Cenomanian, the stratigraphic data indicate a change in the depositional environment from offshore to shoreface. Organic geochemistry is used in order to characterize origin and variability of the organic matter in relation to the stratigraphic data. The study is carried out on core samples from 2 drill holes (MAR 203 and MAR 501). Analyses of the aliphatic and aromatic hydrocarbons were performed using GC–MS and focused on biomarker distributions. The biomarkers indicate a contribution of mixed terrestrial and marine organic matter. The changes in molecular signatures are related to variations in the source of organic matter (marine versus terrestrial), preservation conditions (largely influenced by clay and early diagenesis), environmental oxidation-reduction and acidic conditions as well as bioturbation. Various environmental zones, characterized by different molecular signatures, can be distinguished. Resin derived biomarkers can be assigned to higher plant material input and may reflect the evolution and diversity of Gymnospermae versus Angiospermae during the transgressive/regressive cycle. The relative sea-level variations are clearly correlated with the nature and the preservation of the organic matter. For example, the Pr/Ph and Pr/n-C17 ratios as well as the regular steranes distributions underline the maximum flooding surface evidenced by other studies. We observe a good correlation between the organic data and sequence stratigraphy: changes in geochemical signatures reflect the 3rd order depositional cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号