首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Neural network-based GPS GDOP approximation and classification   总被引:2,自引:2,他引:2  
In this paper, the neural network (NN)-based navigation satellite subset selection is presented. The approach is based on approximation or classification of the satellite geometry dilution of precision (GDOP) factors utilizing the NN approach. Without matrix inversion required, the NN-based approach is capable of evaluating all subsets of satellites and hence reduces the computational burden. This would enable the use of a high-integrity navigation solution without the delay required for many matrix inversions. For overcoming the problem of slow learning in the BPNN, three other NNs that feature very fast learning speed, including the optimal interpolative (OI) Net, probabilistic neural network (PNN) and general regression neural network (GRNN), are employed. The network performance and computational expense on NN-based GDOP approximation and classification are explored. All the networks are able to provide sufficiently good accuracy, given enough time (for BPNN) or enough training data (for the other three networks).  相似文献   
2.
Divided difference filter (DDF) with quaternion-based dynamic process modeling is applied to global positioning system (GPS) navigation. Using techniques similar to those of the unscented Kalman filter (UKF), the DDF uses divided difference approximations of derivatives based on Stirling’s interpolation formula which results in a similar mean but different posterior covariance compared to the extended Kalman filter (EKF) solutions. The second-order divided difference is obtained from the mean and covariance in second-order polynomial approximation. The quaternion-based dynamic model is adopted for avoiding the singularity problems encountered in the Euler angle method and enhancing the computational efficiency. The proposed method is applied to GPS navigation to increase the navigation estimation accuracy at high-dynamic regions while preserving (without sacrificing) the precision at low-dynamic regions. For the illustrated example, the second-order DDF can deliver about 41–82% accuracy improvement as compared to the EKF. Some properties and performance are assessed and compared to those of the EKF and UKF approaches.  相似文献   
3.
The solution for the receivers position and clock bias using four or more GPS pseudorange measurements involves nonlinear quadratic equations. One of the popular techniques for linearizing the equations and solving them is the least squares (LS) scheme based on an iterative gradient approach. For real-time applications when the solution is to be obtained within a time of the order of 100 ns, a computer often cannot comply with the desired computation time, or high-end computers are too expensive. In this paper various ordinary differential equation formulation schemes, and corresponding circuits of neuron-like analog processors, will be described and several tested in order to ascertain their suitability for GPS navigation processing purposes. The circuits of simple neuron-like analog processors are employed essentially for on-line inversion of matrices, which is usually required for determining LS solutions, as well as dilution of precision (DOP) calculation in standard GPS receivers. Data from single epoch and kinematic positioning experiments will be simulated to validate the effectiveness of the proposed scheme. The properties and performance of the proposed scheme will be assessed and compared to those of the conventional method of matrix inversion.  相似文献   
4.
This paper preliminarily investigates the application of unscented Kalman filter (UKF) approach with nonlinear dynamic process modeling for Global positioning system (GPS) navigation processing. Many estimation problems, including the GPS navigation, are actually nonlinear. Although it has been common that additional fictitious process noise can be added to the system model, however, the more suitable cure for non convergence caused by unmodeled states is to correct the model. For the nonlinear estimation problem, alternatives for the classical model-based extended Kalman filter (EKF) can be employed. The UKF is a nonlinear distribution approximation method, which uses a finite number of sigma points to propagate the probability of state distribution through the nonlinear dynamics of system. The UKF exhibits superior performance when compared with EKF since the series approximations in the EKF algorithm can lead to poor representations of the nonlinear functions and probability distributions of interest. GPS navigation processing using the proposed approach will be conducted to validate the effectiveness of the proposed strategy. The performance of the UKF with nonlinear dynamic process model will be assessed and compared to those of conventional EKF.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号